Editors’ clubs benefit researchers and trainees
Elizabeth H. Catania and Kevin T. Seale

Effective written communication of research findings is central to the practice of scientific research. A well-written scientific paper is more likely to be published and more likely to be appreciated by the scientific community than a poorly written one. Good writing requires language skills, logic and an understanding of manuscript organization, and is always improved by feedback. Many scientists are not especially good writers, regardless of whether or not they speak English as a first language, and those who feel as if they are struggling to create clear and effective prose should seek assistance in editing their documents. Ideally, research institutions would offer accessible, free editing services to help authors improve their research manuscripts. One useful model for accomplishing this is a trainee-run editorial club, which provides editing services within the university while benefitting trainees in a number of ways.

The Vanderbilt Editors’ Club (https://medschool.mc.vanderbilt.edu/editors_club/) is a group of post-doctoral fellows and graduate students that offers editing services, free of charge, to Vanderbilt faculty and trainees. The basic structure of the club was based on the University of Pennsylvania’s Postdoc Editors Club (http://www.med.upenn.edu/bpc/pec.shtml), which is the only other similar club of which we are aware. When the Vanderbilt Editors’ Club was created in 2006, it was little more than a handful of post-docs and graduate students who were interested in editing the works of their peers. The club offers editorial services primarily to non-native-English-speaking trainees and accepts everything from journal articles to dissertation chapters. The club web site explains the services offered by the club and gives authors an easy way to submit manuscripts or contact the editors. Several types of editing are available that provide varying levels of input, ranging from simple copy editing (spelling and grammar) to substantive editing (organization and clarity). Authors can request a specific editor by reviewing the research specialties of club editors on the web site; otherwise, the Senior Editors assign manuscripts to editors in rotation. Manuscripts are returned to the author within 7-10 days with an option to meet in person to review the edits. Finally, authors and editors are asked to respond to a survey on the editing experience in order to track and improve editing quality.

The Editors’ Club has grown substantially since it was founded 2 years ago. We now have 24 editors from 14 departments and centers throughout the university and have edited 37 manuscripts thus far in 2008. We have benefited from the early experiences of the club to increase its value both to club members and to the Vanderbilt research community. Monthly meetings feature career talks or skills workshops from science editors. One of our first speakers was a freelance copy editor, who generously critiqued an editing sample from each club member after her visit. As a result, each editor received personalized feedback on their abilities from a professional and there was a more general gain for the club — screening. Every person joining the club must now complete an editing test before they can begin editing. Currently, club members are creating a handbook of editing based on the lectures over the last two years that can be given to incoming editors to improve their editing and their own writing. Editors are encouraged, and occasionally receive financial support, to attend seminars and meetings to broaden their skill sets, and then return to the club to share their newfound knowledge. These activities have allowed the club to offer increasingly superior editorial services to the Vanderbilt research community.

Excellent scientific writing should be the goal of all scientists. As universities and research institutions aim to attract the best scholars from around the world, they can facilitate the effective communication of science by helping researchers to polish their manuscripts before submission, which is particularly important when scientists are not writing in their native language. Editors’ clubs can provide editorial and writing development services to researchers and, at the same time, offer valuable professional development to the participating trainees, whether their career interests lie in academia, industry or technical writing and editing.

Elizabeth Catania and Kevin Seale are postdoctoral fellows and senior editors of the Editors’ Club at Vanderbilt University Medical Center, Nashville, TN.

Mission of the Editors’ Club
- To offer valuable editorial advice regarding language use, organization and clarity to Vanderbilt University graduate students and postdoctoral fellows
- To help graduate students and postdoctoral fellows develop essential written communication skills
- To provide professional development for individuals interested in careers in academia, technical writing or editing
- To help editors improve their own scientific writing skills
- To maintain Vanderbilt’s institutional reputation in the field of biomedical research by striving for clarity in all forms of written communication.

doi:10.1242/dmm.002279
DMM awards travel funds to early-career researchers

DMM is fully committed to advancing disease research and fostering communication and collaboration in the disease research community. Thus, DMM awards Travelling Fellowships to young researchers, so that they can expand and enhance their research goals through visits to other laboratories. Here are five new recipients of the DMM Travelling Fellowship with descriptions of their work:

Elia Di Schiavi of the National Research Council (Consiglio Nazionale delle Ricerche) in Naples, Italy, is using C. elegans to study the molecular signals that accompany axonal injury and cause subsequent neurodegeneration. His work in the lab of Massimo A. Hilliard at the University of Queensland, Australia, aims to study the gene changes associated with axonal breakage in worm mechanosensory neurons. He will also bring laser axotomy techniques to his colleagues in the Bazzicalupo laboratory at the Institute of Genetics and Biophysics in Naples.

One potential therapy for multiple sclerosis (MS) involves initiating immune tolerance in order to combat ongoing demyelination. Daniel R. Getts of Stephen Miller’s laboratory at Northwestern University, IL, is studying the mechanisms underlying innate immunity in the mouse experimental autoimmune encephalomyelitis (EAE) model of human MS. He will collaborate with Nicholas King at the University of Sydney to analyze mouse immune cell changes in response to immunological tolerance treatment of autoimmune disease.

Point mutations and deletions of mitochondrial DNA (mtDNA) are increasingly implicated in many human diseases, particularly those involving neurodegenerative dysfunction. The mitochondrial oxidative phosphorylation (OXPHOS) genetic research group at the University of Zaragoza, Spain, has isolated mtDNA mutations that disrupt important components of the OXPHOS pathway. Ana Latorre Pellicer will work with Douglas Wallace and colleagues at the University of California Irvine in order to use the Wallace protocol of expressing mtDNA mutants in mice, and thereby create novel mouse models of mitochondrial disease.

Andrew Whittle of the Institute of Metabolic Science at the University of Cambridge is examining the role of bone morphogenic proteins (BMP) on brown adipose tissue (BAT). These proteins might regulate the thermogenic activity of BAT, and are thus viewed as potential targets for the treatment of obesity. Whittle will work with Kamal Rahmouni of the University of Iowa to assess sympathetic nerve responses in mice lacking BMP8, in order to understand the role of BMP8 in regulating BAT activity.

Developmental abnormalities in the hindbrain are implicated in sudden infant death syndrome (SIDS) and perinatal death owing to maternal cigarette smoking. Leigh Jane Wilson of the MRC Centre for Developmental Neurobiology at King’s College in London is using mouse models to investigate the cause of such smoking-induced abnormalities. In collaboration with Malcolm Maden of the University of Florida, Wilson will investigate the role of retinoic acid signaling in brain development, and the effect of nicotine exposure on this process.