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ABSTRACT
The genes that are required for organismal survival are annotated as
‘essential genes’. Identifying all the essential genes of an animal
species can reveal critical functions that are needed during the
development of the organism. To inform studies on mouse
development, we developed a supervised machine learning
classifier based on phenotype data from mouse knockout
experiments. We used this classifier to predict the essentiality of
mouse genes lacking experimental data. Validation of our predictions
against a blind test set of recent mouse knockout experimental data
indicated a high level of accuracy (>80%). We also validated our
predictions for other mouse mutagenesis methodologies,
demonstrating that the predictions are accurate for lethal
phenotypes isolated in random chemical mutagenesis screens and
embryonic stem cell screens. The biological functions that are
enriched in essential and non-essential genes have been identified,
showing that essential genes tend to encode intracellular proteins that
interact with nucleic acids. The genome distribution of predicted
essential and non-essential genes was analysed, demonstrating that
the density of essential genes varies throughout the genome. A
comparison with human essential and non-essential genes was
performed, revealing conservation between human and mouse gene
essentiality status. Our genome-wide predictions of mouse essential
genes will be of value for the planning of mouse knockout
experiments and phenotyping assays, for understanding the
functional processes required during mouse development, and for
the prioritisation of disease candidate genes identified in human
genome and exome sequence datasets.
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INTRODUCTION
Essential genes are those that are required for the survival of an
organism. Although studies in unicellular organisms, such as yeast,
have experimentally defined the set of essential genes in those species
(Kofoed et al., 2015), the large genome size and developmental
complexity of animal models have hindered a comprehensive
experimental essentiality analysis in these organisms. Knowledge
of essential genes in animal species is informative for understanding
the biological functions required during development, as well as for
identifying candidate genes for human genetic diseases. In particular,
the mouse has been a long-standing model for human disease
research due to the ability to generate specific genome alterations in
mouse embryonic stem cells, allowing the targeted deletion or
knockout of individual genes. Mouse knockout experiments have
proved useful in identifying a subset of mammalian essential genes
(Sung et al., 2012); however, the entirety of the mouse genome has
not yet been experimentally examined.

Current efforts to experimentally investigate gene function using
mouse models are enhanced by the creation of the International
Knockout Mouse Consortium (IKMC) (Bradley et al., 2012), a large
global project with the goal of generating knockouts for over 20,000
protein-coding mouse genes. The International Mouse Phenotyping
Consortium (IMPC) (Ayadi et al., 2012; Brown and Moore, 2012)
builds upon the efforts of IKMC to discover functional insights for
every gene by systematically phenotyping over 20,000 knockout
mouse strains. In order to optimise knockout experiment design,
machine learning algorithms (Yuan et al., 2012) have been used to
predict the essentialities of mouse genes based on their genomic
features. Moreover, predicting the essentialities of mouse genes using
machine learning algorithms can aid in the identification of candidate
genes for human genetic diseases, due to the close genetic and
physiological similarities between mouse and human (Rosenthal and
Brown, 2007).Machine learningmethods are also useful in identifying
features associated with gene essentiality (Kabir et al., 2017).

Avariety of machine learningmethodologies have proven useful in
predicting essential genes in several organisms. Many studies have
sought to identify bacterial and fungal essential genes, because
knowledge of gene essentiality in microbial species can reveal
potential drug targets (Yu et al., 2017; Hua et al., 2016; Deng, 2015;
Ning et al., 2014; Lu et al., 2014; Cheng et al., 2014; Cheng et al.,
2013; Deng et al., 2011; Plaimas et al., 2010; Seringhaus et al., 2006;
Gustafson et al., 2006; Liu et al., 2017; Nigatu et al., 2017).
Saccharomyces cerevisiae essential genes have been identified using
machine learning classifiers trained on multiple characteristics of
protein function, such as physical, metabolic and transcriptional
regulatory interactions, gene expression patterns and annotated
biological functions (Acencio and Lemke, 2009; Zhong et al., 2013;Received 14 March 2018; Accepted 19 October 2018
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Hwang et al., 2009). Protein interaction network topologies have also
been utilised for the prediction of human essential genes (Yang et al.,
2014). The lackof functional annotationof themajorityof plant genes,
and the long generation time required for experimental analysis of
mutant plant phenotypes, provided the motivation to implement a
random forest machine learning algorithm for the prediction of
Arabidopsis thaliana essential genes (Lloyd et al., 2015); similar
challenges underlie the identification of mammalian essential genes.
In order to provide insights into the gene functions required

during mammalian development, we identified a dataset of genes
needed for a mouse embryo to survive until the postnatal period,
which we define as essential genes (Kabir et al., 2017). Here, we
implement a supervised machine learning approach to generate an
essentiality classifier, testing a variety of machine learning methods.
We found that random forests provided the most accurate classifier
and, following feature selection, achieved classification accuracy of
greater than 95% during 10-fold cross-validation. The accuracy of
our classifier was also assessed against 2 blind test sets, and over
80% accuracy was achieved on these datasets. The classifier was
then used to predict the essentiality of the remaining protein-coding
genes in the mouse genome. Functions linked to each essentiality
class were identified, and the transferability of our classifications
was determined by comparing our predictions with experimental
data from mouse mutants generated through non-knockout
experimental methods and human gene essentiality annotations.
We conclude that our predictions have a high degree of accuracy,
and thus could facilitate mouse knockout experimental design and
contribute to a deeper understanding of biological functions that are
essential for mammalian development.

RESULTS
Training and test sets
Manually curated datasets containing 1307 essential genes (those
with pre- or perinatal lethal phenotypes in mouse knockout
experiments) and 3459 non-essential genes (those with viable
phenotypes in mouse knockout experiments) (Kabir et al., 2017)
were used as the input to our classifier. In total, 102 features
(Tables S1 and S2) were identified from multiple public databases
as characteristics that might distinguish between essential and non-
essential genes. In total, 75 of the 102 features analysed had
statistically significant differences in values between genes in the
essential and non-essential training sets (Kabir et al., 2017). Owing
to the large number of features with distinct values, we hypothesised
that essential and non-essential genes could be differentiated by
their properties. We therefore sought to test a variety of machine
learning methods to identify the most accurate approach to
categorise genes as essential or non-essential. Our original dataset
is an imbalanced dataset as the number of non-essential genes is
much larger than the number of essential genes. Imbalanced
datasets can degrade the classification performance of machine
learning classifiers due to their bias towards classifying instances
belonging to the majority class (Visa and Ralescu, 2005). Therefore,
to develop a machine learning classifier, we generated balanced
training sets containing all 1307 essential genes, and 1307 non-
essential genes selected at random from the total set of 3459 non-
essential genes (Table S3). To remove possible bias, this process
was repeated 10 times in order to generate 10 different balanced
training datasets containing different sets of non-essential mouse
genes (Table S3). We further developed 10 random forest classifiers
by implementing 10-fold cross-validation on these training datasets,
utilising all features. We found a very small range in the cross-
validation accuracies (89.89-91.42%) (Table S4), showing that the

choice of genes in the training datasets had little effect. The mean
accuracy of these classifiers was 90.90%; therefore, we selected the
training dataset that had an accuracy of 90.85% for all further
experiments, as this was closest to this mean value. We might have
overestimated the overall performance of our classifier if we
selected a training dataset for which the cross-validation accuracy
was more than the mean value.

In order to evaluate the accuracy of the machine learning
classifiers, we assembled test sets. Test set 1 (Table S3) contained
229 essential and 802 non-essential genes, the essentiality status of
which was published by the IMPC either in the literature or via their
website (Koscielny et al., 2013) after our training sets were
compiled. Test set 2 (Table S3) was formed of the 2152 genes in our
original non-essential gene dataset that were not incorporated into
the balanced essential and non-essential training sets. Test set 4
contained 169 lethal and 441 viable genes, which were added to the
IMPC database at the conclusion of the project (April 2018), and
were not already included in our training datasets or in Test sets 1
and 2. Test set genes were not used in classifier training.

We also compiled a prediction dataset containing all genes in the
mouse genome with no experimental essentiality annotations (Test
set 3). MouseMine (Motenko et al., 2015) was used to retrieve all
known mouse genes. In total, 22,944 protein-coding mouse genes
were identified. After excluding genes with known essentiality that
are included in training and test sets, and removing non-mouse
genes and duplicate gene names from the MouseMine dataset,
15,495 unique protein-coding genes with unknown essentiality
status remained in Test set 3 (Table S3). All the features previously
collected for training set genes were then collected for test set genes,
following the same methodology used for compiling training set
features (Kabir et al., 2017).

Data pre-processing
We found that there were no data available for several features for
genes in the training and test datasets. We found that 10 features of
the protein-protein interaction (PPI) network compiled from known
PPIs had missing values for nearly 40% of the genes in the training
set, so these features (Table S2) were removed from classifier
training. The other 92 features had missing values for fewer than
12% of the genes. For classifier training, the missing values of these
features were replaced with the feature mean values. Following the
replacement of missing values, features within the training datasets
were discretised using the ChiMerge algorithm (Kerber, 1992).

Classifier optimisation
An iterative process was used to test 6 different supervised machine
learning classifiers. We assayed random forests, support vector
machines (SVMs) with radial basis function (RBF) kernel,
polynomial kernel SVMs, logistic regression, naïve Bayes
classifier and decision tree classifiers in 10-fold cross-validation
on the discretised training sets. We applied information gain feature
selection (Yang and Pederson, 1997), and found that 83 features had
an information gain greater than 0 (Table S4). These 83 features
were ranked in order of significance. Classifiers were tested using
increasing numbers of features (ranging from 5 to 83 features) for
10-fold cross-validation on the training sets (Table S4). From these
studies, we found that the random forest classifier trained with 80
features had the best performance in 10-fold cross-validation. Using
a random forest with 230 trees, we generated a 10-fold cross-
validation accuracy of 98.1%. This classifier reached 79.3%
accuracy on Test set 1, and the area under the curve (AUC) value
of the corresponding receiver operating characteristic (ROC) plot
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was 0.85 (Fig. 1A). A confusion matrix shows that this classifier
predicted 59 known essential genes to have a non-essential function,
and 178 known non-essential genes to have essential functions
(Fig. 1B). This random forest classifier had an accuracy of 85%
on Test set 2. Because Test set 1 contains both essential and
non-essential genes, we chose the classifier with the best
performance on Test set 1 for further studies. None of the other
machine learning methods tested achieved a higher AUC on Test set
1 than the random forest classifier (Fig. 2; Table S4), so the random
forest method was used henceforth.
We sought to improve the performance of the random forest

classifier by implementing feature selection. When implementing a
classifier, an individual feature can be irrelevant, strongly relevant
(removal of this reduces the overall prediction accuracy) or weakly
relevant (not sufficient alone for prediction). Feature selection,
therefore, is a very important stage for the classification problem

when using datasets comprised of a large number features, in order
to select the most informative features and remove those that simply
add noise and thus weaken a predictor. A genetic algorithm (GA)
feature selection method (Witten et al., 2011) was applied on the
training sets as an alternative method to determine whether a smaller
set of features would result in random forests with increased
prediction accuracy. The GA found a subset of 39 features
(Table S4) after 20 generations that improved the classifier
performance. These 39 features belong to 9 types: features of the
PPI network representing known PPIs and predicted PPIs, features
of the PPI network representing known PPIs only, amino acid
content of proteins, gene expression, protein types, subcellular
localisation, predicted subcellular localisation and enzyme classes.
The PPI network features are ranked highest by information gain,
which measures the relevance of a feature, and are the most
informative features for predicting the essentiality of protein-coding
mouse genes. Notably, features such as gene length, GC content,
evolutionary age, presence of transmembrane domains and all Gene
Ontology (GO) annotations, which we previously identified
as statistically different in their distribution between essential and
non-essential genes (Kabir et al., 2017), were not found to improve
classifier accuracy and were not incorporated into further classifier
training. One reason for this surprising result is that the information
in these features could be related to or dependent upon information
found in other features, so their inclusion adds no value to the
classifier. For example, gene length is not needed if protein length
is present.

A random forest classifier was subsequently trained on the 39
features identified from GA feature selection, yielding an improved
ROC plot AUC of 0.816 on blind test set 1 (Fig. 1C). The random
forest has a true-positive class of 170 instances, true-negative class of
645 instances, false-positive class of 157 instances and false-negative
class of 59 instances (Fig. 1D). These results are an improvement over
a prior study predicting the essentiality of mouse genes (Yuan et al.,
2012). On Test set 2, which only contains non-essential genes, the
random forest classifier trained on all 92 features had an accuracy of
80.1%. Following GA feature selection, the random forest classifier
trained on 39 features showed an accuracy of 79.9% on Test set 2,
showing very little decline in accuracy despite the removal of many
features, which allows for increased speed of classification. We
formed an additional blind test set of mouse knockout phenotypes
published by the IMPC in April 2018 (Test set 4, Table S3). Genes
already included in our training sets or Test sets 1 and 2 were
excluded from Test set 4. Our random forests classifier trained on 39
features produced accurate predictions for 72% of genes with reported
lethal phenotypes and 71% of genes with reported viable phenotypes
in Test set 4, consistent with our findings from Test set 1, which
included IMPC data reported prior to 2018.

We also compared the overlap between our known essential and
non-essential genes obtained from searches of the Mouse Genome
Informatics (MGI) database and data released by the IMPC
(Koscielny et al., 2013). We found a total of 4752 genes in MGI
with essentiality data (Table S4). Of these genes, 3467 have not
been tested by the IMPC. In comparing the essentiality annotations
for each gene with known essentiality, we did find mismatches
between the MGI classifications and IMPC classifications. The
percentage of mismatches is greatest for genes classified as essential
in MGI and as non-essential by the IMPC. A significant proportion
of genes falling into this mismatch category have multiple alleles
described in MGI, including both essential and non-essential alleles
(owing to experimental differences in gene targeting strategy or
strain background); in the IMPC, the phenotype analysis of a single

Fig. 1. Prediction accuracies of the random forest classifiers. Prediction
accuracies of the random forest classifiers. (A) ROC plot with AUC 0.803
for the random forest classifier trained on 80 features and tested on Test set
1. (B) Confusion matrix of the random forest classifier trained on 80 features
and tested on Test set 1. (C) ROC plot with AUC 0.816 for the random forest
classifier trained on the 39 features selected by the genetic algorithm feature
selection and tested on blind test set 1. (D) Confusion matrix of the random
forest classifier trained on the 39 features selected by the genetic algorithm
feature selection and tested on blind test set 1.
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allele has been reported. We calculate that ∼20% of genes with
mismatching essentiality status between MGI and the IMPC have
variations in the phenotypes produced due to the existence of
multiple knockout experiments. Additionally, the IMPC classifies
some genes as subviable, defined as genes with knockout alleles
whereby homozygous null pups comprise less than 12.5% of a litter
(Koscielny et al., 2013), which is a category that we did not include
in our essentiality definitions. Of the 432 subviable genes listed in
IMPC, 109 are found in our training sets compiled from MGI. Of
these 109 genes, ∼20% were contained within our essential gene
training set, with the remaining 80% in our non-essential gene sets.
Approximately 92% of the subviable genes found within our
essential genes training set had additional experimental alleles
reported in MGI, which met our definition of essential genes
(Table S5). Based on our analysis of the discrepancies betweenMGI
and IMPC data, we predict that as many as 20% of genes will
display conflicting essentiality phenotypes depending upon the
experimental analysis performed.

Essentiality predictions
Based on the accurate predictions of genes in Test sets 1 and 2, we
used the random forest classifier trained on 39 features (identified
from genetic algorithm feature selection) to predict the essentiality
status of the remainder of mouse protein-coding genes with no
experimental annotations (Table S3). Using this classifier, we found
that 28% of genes in the genome are known or predicted essential
genes, and 72% of genes in the genome are known or predicted non-
essential genes, percentages consistent with mouse knockout
experimental results (White et al., 2013; Dickinson et al., 2016).
The confidence level for each gene essentiality prediction was
determined as a measure of whether or not the prediction is accurate.
The confidence level is the fraction of the trees of the random forest
that predict an essential gene to be essential, or the fraction of trees
that predict a non-essential gene as non-essential. A confidence
level of 1 indicates that 100% of trees had the same essentiality
status prediction. The confidence levels of the predictions
of essential genes are between 0.5 and 0.88, with 1 as the
maximum confidence and 0.5 as the minimum confidence.
The mean confidence level of essential gene predictions is 0.65.

The confidence levels of non-essential gene predictions are between
0.5 and 0.95, with the mean confidence level of non-essential gene
predictions being 0.65.

Applicability to point mutation phenotypes
We compared the accuracy of our predictions with experimental
data generated by alternative mouse mutagenesis methodologies
aside from targeted gene deletions. Data were collected from theMGI
database (version 6.07) (Bult et al., 2016), using the search terms
‘Viable’ and ‘Lethal’ and specifying ‘Null/Knockout alleles’, with all
chromosomes and generationmethods selected other than ‘Targeted’,
‘Transgenic’ and ‘QTL’. We excluded targeted alleles because these
are already in our training sets.We excluded transgenic alleles as some
of these experiments assess overexpression ormisexpression of genes,
which are not directly comparable to the null alleles contained in our
training sets. Finally, we excluded QTL alleles because these are not
single gene effects. The search returned 201 essential genes and 29
non-essential genes. Duplicate entries, genes included in our test sets
or genes found in our training sets were excluded from the analysis.
Some genes were retrieved from both the essential and non-essential
searches; these genes were categorised as either essential or non-
essential following consultation of published phenotypes. Our final
alternative mutagenesis method dataset included 116 essential and
non-essential query genes, with allele types of ‘Gene trapped’,
‘Transposon induced’, ‘Chemically induced’, ‘Spontaneous’ or
‘Endonuclease mediated’, which were checked against our classifier
predictions (Table S3). In 72% of cases, the essentiality classifier
predicted the correct essentialityof the query genes,with 32out of 116
genes being incorrectly predicted. The average prediction confidence
level for incorrectly predicted genes was 0.608, with the mean
confidence level for correct predictions being 0.647 (Fig. 3A). The
difference in confidence levels between correct and incorrect
predictions was significant (Welch’s 2-sample t-test, P=0.0166),
confirming that incorrectly predicted genes had lower confidence
predictions and correctly predicted genes had higher prediction
confidence levels. We also compared the prediction confidence for
Test set 1 genes, and found a similar trendwithin both the essential and
non-essential gene predictions, such that incorrect predictions were of
significantly lower confidence than correct predictions (Fig. 3B,C).

Fig. 2. Confusionmatrices of the 6 classifiers trainedon all 83 features.Themachine learning algorithm is listed at the top of each chart: (A) random forest; (B)
RBF kernel SVM; (C) linear SVM; (D) logistic regression; (E) naïve Bayes; (F) decision tree.
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Thus, we conclude that our classifier predicts essentialities of genes
that have been experimentally determined by mutagenesis methods
other than targeted deletions, with greater than 72% of essentiality
predictions correctly validated. The confidence levels of our
predictions reflect their probable accuracy for all datasets examined.
Additionally, a recent publication listed mouse essential genes

revealed from experiments to generate a haploid mouse embryonic
stem cell biobank (Elling et al., 2017). A total of 23 essential genes
were identified through experimental analysis as essential for mouse
embryonic stem cell survival. Of these genes, 16 were contained
within our prediction dataset. Our classifier accurately predicted the
essentiality status for 15 of the 16 genes (94%; Table S6),
demonstrating further successful application of our classifier to
additional experimental data types.

Enriched features of essential and non-essential genes
To understand the biological functions specific to essential and non-
essential genes, we performed functional annotation of known and
predicted essential and non-essential mouse genes using 4 distinct
web tools to identify enriched features: Database for Annotation,

Visualisation and Integrated Discovery (DAVID) v6.8 (Dennis et al.,
2003), WebGestalt (2017 update) (Zhang et al., 2005), g:Profiler
(2016 update) (Reimand et al., 2007) and PANTHER (v11.1) (Mi
et al., 2016). Because our predicted gene datasets are considerably
larger than the training sets we have previously analysed, we wished
to explore whether or not the functional annotations of the predicted
genes were similar to those of the genes with known essentiality
status. Consistent with our previous work on experimentally validated
mouse essential genes (Kabir et al., 2017), proteins encoded by
predicted essential genes were found to be significantly enriched in
localisation to intracellular locations, with 50.5% of genes annotated
with the cellular component (CC) GO term ‘nucleus’. Furthermore,
biological process (BP) and molecular function (MF) GO terms
relating to translation, chromosome segregation, information
processing, RNA splicing, mRNA processing and numerous
metabolic process were commonly enriched in predicted
essential or non-essential mouse genes (Table 1). Helicase
protein domains and helicase-related terms were also frequently
significantly enriched (P<0.05) in all webtool outputs for
predicted essential genes. These results confirm that essential
genes tend to have critical functions in DNA replication, DNA
repair, transcription and translation, as helicases are known to be
involved in these processes (Sedman et al., 2000). Disease
pathways were frequently enriched amongst essential genes,
including many cancers, and Huntington’s, Alzheimer’s and
Parkinson’s diseases, confirming prior reports that essential
genes are disease related (Dickerson et al., 2011).

Conversely, the UniProt keywords ‘transmembrane helix’ and
‘transmembrane’ were significantly enriched in the predicted non-
essential genes (P=1.10×10−154 and P=2.62×10−154, respectively),
which is consistent with the significant enrichment of transmembrane
proteins found in the known viablemouse genes previously examined
(Kabir et al., 2017). Notably, the number of protein transmembrane
domains was not a feature that was included in classifier training
following GA feature selection, so it is interesting that this feature is
prominent amongst the predicted non-essential genes even though it
was not used in the classification criteria. We noted that olfactory
functions were enriched in the predicted viable gene set, most likely
due to the large number of olfactory receptor genes found in the
mouse genome. We therefore excluded the olfactory receptors from
our predicted viable gene dataset and performed the functional
annotation analysis again to identify other features that are enriched
once olfactory functions are excluded (Table S7).

Our findings on the functional enrichments of the large predicted
gene datasets are consistent with the functions enriched in the smaller
training datasets (Kabir et al., 2017), and can therefore identify
biological requirements during development and postnatal life. Our
classifier did not incorporate GO functional annotations within its
selection criteria, so it is striking that there is consistent agreement
between the GO functions enriched in genes with known essentiality
status and genes with predicted essentiality status. In general, the
known and predicted genes of either essentiality category share the
same GO Slim annotations for BP, CC, MF and PANTHER protein
domains, with deviation from the overall genome distribution for
these annotations (Table 2). These findings highlight the functional
differences between essential and non-essential genes.

PPI networks of essential and non-essential genes
Since we found protein network features to be highly informative in
our classifier, we sought to examine the protein network topology of
predicted essential and non-essential genes for comparison with
their known essentiality counterparts. All PPI network graphs can

Fig. 3. Differences in ‘Essentiality’ gene prediction confidence levels
for experimentally validated blind and alternative mutagenesis mouse
genes. (A-C) A Normal distribution was confirmed for alternative mutagenesis
data (n=115 genes) using Shapiro–Wilk test. Welch’s 2-sample t-test identified
a significant difference between correct and incorrect prediction confidence-
levels (P=0.0166) for predictions of alternative mutagenesis genes (A). Both
essential (n=229 genes) and non-essential (n=802 genes) blind test set 1 data
were not normally distributed (Shapiro–Wilk test). UsingWilcoxon’s Rank-Sum
2-sided test, significant differences were found between prediction confidence
levels of correct and incorrect predictions for essential (B) and non-essential
(C) blind test set 1 genes (P=1.75×10−7 and P≤2.2×10−16, respectively).
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be represented by a scale-free model (Vella et al., 2017), as shown
by the degree distribution of the networks, which fits a power-law
curve (Fig. S1). In scale-free models, the degree value (i.e. number
of interactions per network node) of most nodes is far from the
mean. Only a few nodes in each network have a high number of
interactions. However, PPIs of the essential genes datasets (known
and predicted) form networks that are denser, having a higher
average number of neighbours, a higher tendency to form clusters
and less heterogeneity than the corresponding datasets of non-
essential genes (Table 3), using network parameters as defined in
Hubba (Lin et al., 2008; Dong and Horvath, 2007) and
NetworkAnalyzer (Doncheva et al., 2012). We infer from the
graph data that the PPI network generated from proteins encoded by
essential genes shows higher connectivity than networks generated

from non-essential genes, and that essential proteins are more likely
to form hubs in the network (Table S8). Network features such as
degree do differ between the known and predicted networks of both
essentiality classes, indicating that the expectation that known and
predicted proteins of a particular essentiality class will have the
same properties could be an oversimplification.

Chromosomal distribution of essential and non-essential
genes
We examined the distribution of essential and non-essential genes
within the mouse genome, partitioned by known and predicted
essentiality status (Fig. 4; Table S9). Chromosomes 11, 12 and 18
have the highest proportion of known essential genes, which
comprise 9.96%, 9.84% and 9.60% of their entire chromosomal

Table 1. Top 10 enriched GO terms found within DAVID for predicted essential and predicted non-essential mouse genes

Predicted essential Predicted non-essential

Cellular component Biological process Molecular function Cellular component Biological process Molecular function

Nucleus mRNA processing Poly(A) RNA binding Integral component
of membrane

Sensory perception of smell Olfactory receptor
activity

50.54% 5.17% 16.14% 38.89% 10.48% 10.42%
P=7.97×10−265 P=3.81×10−73 P=1.10×10−207 P=2.61×10−182 P<3.83×10−197 P=3.55×10−289

Cytoplasm Transcription, DNA
templated

RNA binding Plasma membrane G-protein-coupled receptor
signalling pathway

G-protein-coupled
receptor activity

46.89% 16.79% 9.72% 23.67% 12.55% 13.64%
P=1.75×10−125 P=3.70×10−68 P=4.82×10−89 P=9.75×10−20 P=3.83×10−197 P=1.84×10−240

Nucleoplasm RNA splicing Nucleotide binding Extracellular region Detection of chemical
stimulus involved in
sensory perception

Odorant binding

19.03% 3.90% 15.52% 8.64% 1.93% 3.62%
P=2.13×10−115 P=5.88×10−55 P=1.14×10−43 P=2.22×10−6 P=7.95×10−58 P=2.56×10−123

Nucleolus Regulation of
transcription, DNA
templated

Nucleic acid binding Cornified envelope Response to pheromone Pheromone receptor
activity

9.91% 17.06% 9.70% 0.44% 0.99% 1.78%
P=4.10×10−85 P=2.05×10−35 P=3.95×10−23 P=1.81×10−5 P=5.02×10−30 P=2.15×10−41

Intracellular
ribonucleoprotein
complex

Translation DNA binding Keratin filament Detection of chemical
stimulus involved in
sensory perception of
smell

Pheromone binding

4.41% 4.67% 13.07% 0.64% 0.39% 1.01%
P=2.19×10−49 P=6.01×10−34 P=6.04×10−20 P=0.0542 P=8.62×10−10 P=1.16×10−25

Spliceosomal complex Protein transport Cadherin binding
involved in cell-cell
adhesion

Acrosomal vesicle Response to stimulus Transmembrane
signalling receptor
activity

2.40% 6.10% 3.09% 0.65% 1.29% 2.24%
P=2.72×10−40 P=1.70×10−33 P=1.17×10−19 P=0.548 P=1.14×10−6 P=1.55×10−23

Ribosome Cell division Structural constituent
of ribosome

Integral component
of plasma
membrane

Sensory perception of
chemical stimulus

Arachidonic acid
epoxygenase activity

2.86% 4.13% 2.75% 5.31% 0.25% 0.41%
P=1.67×10−37 P=3.42×10−26 P=1.62×10−14 P=0.647 P=8.83×10−4 P=1.67×10−6

Mitochondrion Ribosomal RNA
processing

Ligase activity Sperm fibrous sheath Peptide cross-linking Steroid hydroxylase
activity

12.98% 1.99% 3.44% 0.12% 0.42% 0.43%
P=1.99×10−31 P=6.01×10−25 P=2.40×10−14 P=0.998 P=1.99×10−3 P=1.18×10−4

Nuclear speck Cell cycle mRNA binding Motile cilium Epoxygenase P450
pathway

Serine-type
endopeptidase
inhibitor activity

2.59% 5.80% 1.75% 0.52% 0.26% 0.80%
P=2.55×10−23 P=1.48×10−24 P=1.87×10−13 P=0.999 P=6.52×10−3 P=2.07×10−4

Centrosome Mitotic nuclear
division

ATP binding Outer dynein arm Cilium movement Sulfotransferase
activity

4.30% 3.14% 10.27% 0.08% 0.29% 0.40%
P=1.04×10−22 P=1.69×10−20 P=1.49×10−11 P=0.999 P=7.22×10−3 P=4.31×10−3

The percentage of predicted genes in each term, along with the Bonferroni P-value of enrichment, is listed underneath each term. Terms were retrieved using
DAVID’s default thresholds (EASE=0.1, Count=2).
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Table 2. GO Slim functional annotations for essential and non-essential genes

Biological process (BP)

Essential mouse genes Non-essential mouse genes

Whole-genome totalKnown Predicted Known Predicted

Biological adhesion 1.4% 0.9% 2.0% 1.4% 1.2%
Biological regulation 5.9% 4.3% 9.2% 11.7% 10.6%
Response to stimulus 7.7% 4.0% 10.5% 13.2% 11.7%
Cellular component organisation or biogenesis 6.9% 9.2% 4.0% 3.5% 5.4%
Cellular process 26.1% 31.0% 26.2% 25.6% 26.2%
Developmental process 10.4% 4.9% 8.3% 5.0% 6.0%
Immune system process 2.4% 1.4% 5.8% 2.8% 1.6%
Metabolic process 26.8% 32.2% 18.6% 17.6% 20.5%
Multicellular organismal process 4.7% 2.4% 6.5% 11.6% 8.4%
Localisation 5.7% 8.4% 6.6% 5.6% 6.5%
Locomotion 0.4% 0.2% 0.9% 0.3% 0.4%
Reproduction 1.5% 1.0% 1.2% 1.5% 1.2%
Cell killing 0.0% 0.0% 0.0% 0.1% 0.0%
Growth 0.0% 0.0% 0.1% 0.0% 0.0%

Cellular component (CC)

Essential mouse genes Non-essential mouse genes

Whole-genome totalKnown Predicted Known Predicted

Cell junction 0.7% 0.8% 0.8% 0.5% 0.6%
Cell part 40.0% 42.2% 35.6% 28.6% 43.1%
Extracellular matrix 1.0% 0.4% 3.0% 1.5% 1.2%
Extracellular region 5.1% 1.0% 10.3% 6.8% 6.4%
Macromolecular complex 15.0% 19.0% 7.9% 7.2% 12.6%
Membrane 11.4% 7.1% 22.1% 35.7% 14.4%
Organelle 26.1% 29.6% 19.5% 19.2% 21.3%
Synapse 0.7% 0.0% 0.8% 0.5% 0.4%

Molecular function (MF)

Essential mouse genes Non-essential mouse genes

Whole-genome totalKnown Predicted Known Predicted

Antioxidant activity 0.0% 0.1% 0.4% 0.2% 0.2%
Binding 44.6% 42.5% 36.6% 28.5% 34.0%
Catalytic activity 37.8% 39.9% 33.8% 24.9% 30.8%
Channel regulator activity 0.0% 0.1% 0.3% 0.2% 0.2%
Receptor activity 5.0% 1.9% 11.1% 19.7% 13.1%
Signal transducer activity 1.5% 0.4% 4.8% 14.7% 8.8%
Structural molecule activity 5.4% 9.0% 4.2% 4.3% 5.4%
Translation regulator activity 0.3% 1.5% 0.1% 0.3% 0.5%
Transporter activity 5.4% 4.4% 8.7% 7.3% 6.9%

Protein class

Essential mouse genes Non-essential mouse genes

Whole-genome totalKnown Predicted Known Predicted

Calcium-binding protein 2.0% 1.9% 2.7% 2.9% 2.2%
Cell adhesion molecule 1.7% 0.6% 3.5% 3.9% 1.9%
Cell junction protein 0.9% 0.8% 0.9% 1.0% 1.1%
Nucleic acid binding 21.2% 25.9% 9.8% 9.7% 15.1%
Cytoskeletal protein 4.9% 5.4% 3.9% 4.3% 4.9%
Defence/immunity protein 1.4% 0.7% 4.0% 3.3% 3.8%
Enzyme modulator 6.9% 9.5% 7.8% 8.7% 8.3%
Extracellular matrix protein 1.3% 0.6% 2.8% 2.7% 1.6%
Membrane traffic protein 1.7% 3.1% 1.8% 1.8% 2.4%
Transmembrane receptor 0.3% 0.3% 0.5% 0.4% 0.5%
Signalling molecule 6.1% 2.1% 10.0% 6.9% 6.1%
Transcription factor 15.7% 11.6% 7.5% 6.4% 8.9%
Chaperone 0.7% 1.9% 0.8% 0.8% 1.1%
Oxidoreductase 3.6% 3.8% 3.6% 4.1% 3.8%
Receptor 4.7% 2.1% 10.4% 9.8% 6.5%
Hydrolase 7.8% 7.7% 9.6% 10.2% 8.6%
Isomerase 0.8% 1.2% 0.8% 1.2% 1.1%
Ligase 2.8% 4.3% 1.2% 1.9% 2.5%
Lyase 1.0% 1.1% 1.1% 0.8% 1.1%
Structural protein 0.6% 0.5% 1.0% 1.2% 1.1%
Carrier protein 1.5% 2.4% 2.2% 3.0% 2.5%
Transferase 7.9% 8.7% 6.9% 6.4% 8.0%
Transporter 4.2% 3.5% 7.1% 8.2% 6.6%
Viral protein 0.1% 0.0% 0.1% 0.1% 0.1%

Results report the percentage of genes in each group with a particular annotation.Whole-genome values of 0 include terms with a representation lower than 0.1%.
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gene content, respectively. Chromosomes 5, 12 and 18 have the
highest proportions of predicted essential genes across the whole
genome. This finding agrees with previous experimental work,
including a balancer chromosome random chemical mutagenesis
study that found that∼60% of mutant phenotypes mapped to mouse
Chromosome 11 were homozygous lethal (Kile et al., 2003), and an
additional study that reported many embryonic lethal mutations map
to mouse Chromosome 5 (Wilson et al., 2005).
The essential and non-essential training set and predicted gene

lists were separately uploaded into the bioinformatics database
DAVID v6.8 (Dennis et al., 2003), and significantly enriched
chromosomes were identified in each dataset. In agreement with our
genomic analysis, Chromosome 11 was significantly enriched
for both known essential genes and predicted essential genes
(Bonferroni-corrected P-values of 6.88×10−5 and 1.30×10−3,
respectively). Chromosome 5 was the most significantly enriched
chromosome in the predicted essential genes dataset, with 365
predicted essential genes (8.4% of 4329 genes) located on
Chromosome 5 (Bonferroni-corrected P-value of 1.17×10−3).
Similar results were obtained from WebGestalt (2017 update)
(Table S10).
Chromosome 7 is the autosome with the highest combined

percentage of known and predicted non-essential genes at over 79%.
This result suggests that the majority of genes localised to this
chromosome tend not to function in developmentally crucial
processes. According to the DAVID functional annotation tool,
Chromosome 7 was the most significantly enriched chromosome in
the predicted non-essential genes dataset, with a Bonferroni
corrected P-value of 3.10×10−12, containing 11.2% (1128 of
10,068 DAVID IDs) of predicted non-essential genes. Similar
results were obtained with WebGestalt, finding 5 significantly over-
represented (false discovery rate <0.05) cytogenetic bands
belonging to Chromosome 7 for the predicted non-essential genes

(Table S10). Three Chromosome 7 regions were also detected in the
top 25 most significantly over-represented chromosomal locations
for the known non-essential genes.

Overall, our findings show that there is variation in the distribution
of essential and non-essential genes throughout the genome. These
findings are consistent with a prior study on gene synteny and
density, which found that Chromosome 7 contains far fewer essential
genes than other mouse chromosomes, and that Chromosome 11
contains a high proportion of essential genes (Hentges et al., 2007).
Additionally, experimental studies interrogating regions of mouse
chromosomes through random chemical mutagenesis are consistent
with our findings of gene essentiality predictions, indicating the
localisation of essential genes on mouse Chromosomes 5 (Wilson
et al., 2005) and 11 (Kile et al., 2003).

Database of gene predictions
In order to facilitate searches for essential and non-essential genes,
we created a database of mouse essentiality data (MED; http://
essentiality.ls.manchester.ac.uk). The essentiality status of all
protein-coding mouse genes, and the confidence level of
essentiality predictions, is included in the MED database. The
database has several search options, including gene symbol, MGI
gene ID, Ensembl gene ID and chromosomal location. Additionally,
lists of all essential or non-essential genes within the genome can be
retrieved and downloaded, or lists of genes by essentiality status
within a particular genomic region. The MED database should
expedite searches for mouse gene essentiality status, based upon our
criteria for essential gene identification (Kabir et al., 2017).

Comparison to human essential and non-essential genes
We evaluated the applicability of our findings on mouse gene
essentiality to human genes. We identified 1495 known human non-
essential genes from the literature (Table S11) (MacArthur et al.,

Table 3. Network statistics of PPIs of known and predicted essential and non-essential datasets

Known essential Known non-essential Predicted essential Predicted non-essential

Proteins in dataset 1307 3451 4455 12,505
Network nodes 850 (65%) 1663 (48%) 2635 (59%) 2879 (23%)
Degree 5.6 5.3 12.9 8.6
Clustering coefficient 0.17 0.14 0.32 0.22
Edge percolation component (EPC) 31.8 38.3 33.5 94.2
Density 0.007 0.003 0.005 0.003
Heterogeneity 1.20 1.40 1.27 1.78
Diameter 12 20 13 17
Centralisation 0.109 0.071 0.045 0.049
Path length 4.2 5.3 4.3 5.6

The average value of each parameter for each network is presented.

Fig. 4. The genomic distribution of essential
and non-essential mouse genes, separated
into known and predicted essentiality. The
percentages of essential and non-essential genes
on each chromosome are compiled from the MED
database. In the genome as a whole, we calculate
that there are 28% essential genes and 72%
non-essential genes when known and predicted
essentiality statuses are combined. Data are
provided in Table S8.
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2012; Sulem et al., 2015; Kaiser et al., 2015; Saleheen et al., 2017).
Manual identification of the mouse orthologues of these human
genes was conducted using Homologene, Online Mendelian
Inheritance in Man (OMIM), GeneCards and the UCSC Genome
Browser. Following this, duplicate genes present in the data were
removed, in addition to any read-through genes and non-RefSeq
UCSC genes (as annotated in the UCSC genome browser). Human
genes without known mouse orthologues were excluded from the
analysis. We therefore identified 1260 known non-essential human
genes with mouse orthologues. Known human essential genes were
also collected from the literature, providing in total 5205 genes from
4 publications (Table S11) (Blomen et al., 2015; Lek et al., 2016;
Shamseldin et al., 2015; Wang et al., 2015). As above, mouse
orthologues of these essential human genes were identified, and
read-through genes, duplicate genes and those without a mouse
orthologue excluded from our analysis. We obtained a final dataset
of 5084 essential human genes and their mouse equivalents.
We found that 337 of the 1260 human non-essential genes and

1811 of the 5084 human essential genes were contained within our
mouse essential or non-essential training sets. We then assessed
these human and mouse genes for matching essentiality (Table 4;
Table S11) to determine whether a gene that is annotated as
essential in humans is also known to be essential in the mouse. We
found that 296 (87.83%) known non-essential human genes were
found to be non-essential in mouse knockout experiments, with 41
(12.17%) essentiality mismatches (i.e. non-essential in human but
essential in mouse). The 1811 known essential human genes had
956 (52.79%) essentiality matches to their mouse orthologues,
leaving 855 (47.21%) essential human genes with mismatched
essentialities with their mouse equivalent (Table S11). This
discrepancy could reflect the physiological, biological and
developmental differences between mouse and human.
Essentiality mismatches could also be due to the methodology of
identifying human essential genes, as 2 publications classified
human essential genes as those that caused proliferation failure
when knocked down in cell culture cancer lines (Wang et al., 2015;
Blomen et al., 2015). Cell culture essential genes might not be
required for whole-organism viability, and cancerous cells might
require tumour-specific essential genes not essential for healthy
cells (Guo et al., 2017). However, when only human essential
genes identified by sequencing are compared with mouse essential
genes, 54% of these genes have mismatched essentiality with their
mouse orthologue (Table S11), suggesting that the methodology
for essential gene identification does not play a significant role in
explaining the divergent essentiality classifications. Differences in
mouse and human physiology and selective pressures since the
human-mouse evolutionary split (Thomas et al., 2012) could result
in non-essential genes becoming essential and vice versa.
Critically, most human studies are unable to be truly comparable
to mouse studies due to inabilities to test human embryos
experimentally. One study sequenced human embryonic DNA,
yet was unable to unequivocally confirm that all mutated genes
cause embryonic lethality (Shamseldin et al., 2015). Therefore,
genes that are identified as essential in humans from experimental

cell culture data or sequence analysis might not necessarily cause
lethality during human development.

For the 923 non-essential human genes and 3273 essential human
genes which were not contained in either mouse training set, our
mouse classifier predictions had a high percentage of essentiality
status matches (Table S11). For example, 71.1% (2326/3273) of the
human essential genes were also predicted as being essential in
mice. Additionally, 79.4% of the 923 human non-essential genes
had the same essentiality prediction status as their mouse
orthologues (Table S11). Some discrepancies between human and
mouse gene essentiality status are expected due to biological
differences, rather than inaccurate classifier performance, as it has
been reported that at least 20% of shared human and mouse genes
result in different phenotypes when functionally deleted (Liao and
Zhang, 2008). These results therefore give confidence that our
mouse gene predictions can be used to inform future mouse and
human genetic research.

To discover whether features enriched in essential and non-
essential mouse genes are also enriched in human genes of the same
essentiality, the DAVID functional annotation tool was used to
retrieve enriched annotations. Overall, enriched terms matched
across both species: essential genes had DNA-binding, helicase,
transcription and nucleus-related enrichment, with non-essential
genes enriched in transport, receptor, signalling, immunity, and
membrane and extracellular locations (Table S12). Information
processing terms are therefore absolutely fundamental to all
organisms for viability, survival and reproduction as they are
found to be enriched in minimal gene sets of bacteria (Juhas et al.,
2014), yeast (Acencio and Lemke, 2009), mouse and human (Yang
et al., 2014). Inconsistencies included protein domains associated
with ion channels being enriched in the human essential gene
dataset, but also enriched in the mouse non-essential gene dataset.
Ubiquitin-related and mRNA processing terms were enriched
in human non-essential genes and also in mouse essential genes.
This finding was unexpected, as ubiquitin and mRNA processing
have key developmental functions (Tu et al., 2012; Vriend et al.,
2015); therefore, discrepancies between mouse and human
essentiality annotations might be due to reported human cellular
essential genes not being essential at the organismal level.

DISCUSSION
We compiled training sets from mouse knockout data to identify
essential genes (Kabir et al., 2017), which were utilised to train
several classifiers to predict gene essentiality. This work used awide
range of genomic features to predict essentiality, many of which
have not been examined in previous studies (Yang et al., 2014).
Our methodology has achieved greater 10-fold cross-validation
classification accuracy than prior machine learning predictions of
mouse knockout phenotypes (Yuan et al., 2012). Our classifier’s
performance is also more accurate than a support vector machine
human essential gene classifier examined in jackknife tests and by
10-fold cross-validation (Yang et al., 2014). A strength of our study
is the use of 2 blind test sets to further interrogate the validity of our
classifier, which differs from other prior research generating

Table 4. Human and mouse essential gene conservation

Human essential genes Human non-essential genes

Known mouse essential genes 52.8% (956/1811) 12.2% (41/337)
Known mouse non-essential genes 47.2% (855/1811) 87.8% (296/337)
Predicted mouse essential genes 71.7% (2326/3273) 20.6% (190/923)
Predicted mouse non-essential genes 28.3% (926/3273) 79.4% (733/923)

9

RESOURCE ARTICLE Disease Models & Mechanisms (2018) 11, dmm034546. doi:10.1242/dmm.034546

D
is
ea

se
M
o
d
el
s
&
M
ec
h
an

is
m
s

http://dmm.biologists.org/lookup/doi/10.1242/dmm.034546.supplemental
http://dmm.biologists.org/lookup/doi/10.1242/dmm.034546.supplemental
http://dmm.biologists.org/lookup/doi/10.1242/dmm.034546.supplemental
http://dmm.biologists.org/lookup/doi/10.1242/dmm.034546.supplemental
http://dmm.biologists.org/lookup/doi/10.1242/dmm.034546.supplemental
http://dmm.biologists.org/lookup/doi/10.1242/dmm.034546.supplemental
http://dmm.biologists.org/lookup/doi/10.1242/dmm.034546.supplemental


mammalian essential gene classifiers (Yang et al., 2014; Yuan et al.,
2012), but is similar to methodology utilised in a study to predict
plant gene essentiality (Lloyd et al., 2015). The high accuracy of our
predictions on the blind test sets, and the strong correlation between
the confidence of our predictions and their accuracy, indicates that
our classifier is discriminating between essential and non-essential
genes. The percentage of genes predicted to be essential in the
mouse genome using our classifier is similar to the percentage of
genes found to be essential in mouse knockout experimental studies,
and the properties we found to be enriched in mouse predicted
essential genes are consistent with annotations of known mouse
essential genes (White et al., 2013; Dickinson et al., 2016). Notably,
we found that ∼20% of genes in our essential gene training
dataset had been designated as non-essential genes by the IMPC
(Koscielny et al., 2013). Although clearly the IMPC alleles
produced viable mice, the majority of these genes had additional
experimentally generated alleles reported in the MGI database that
displayed lethal phenotypes. The IMPC database only contains
reports of alleles generated as part of the IMPC project and not prior
experimental data from other laboratories, which presents a
limitation for utilising the IMPC data alone in determining the
essentiality status of a given gene. The comparison of the MGI
and IMPC datasets allows a quantification of the variation in
experimental results for essentiality phenotypes that can be obtained
from mouse knockout studies.
The 10 most informative features used in the random forest

classifier to predict gene essentiality status relate to protein
interactions or protein composition (Table S4). A study on human
essential genes reported that topological properties of the PPI
network are highly informative for predicting essential genes
(Yang et al., 2014), and several studies on other organisms also
find that protein interaction network features are useful for
distinguishing essential and non-essential genes (Acencio and
Lemke, 2009; Lloyd et al., 2015; Hwang et al., 2009; Li et al.,
2014). In many species, essential genes occupy hubs within
protein interaction networks (Lee et al., 2010; Liang and Li, 2007;
Hwang et al., 2009); thus, it is understandable that protein network
features are highly informative for predicting the essentiality
of a gene with unknown essentiality status. Seven features
reporting developmental gene expression levels are also highly
discriminatory, because genes that are not expressed during
development are unlikely to be essential for survival throughout
gestation. Subcellular localisation features such as nucleus and
plasma membrane were also found to have high information gain,
which correlates with our finding that these same features showed
significant statistical differences in their distribution amongst our
training set genes (Kabir et al., 2017).
A publically available online database has been created to

disseminate the essentiality predictions of mouse genes lacking
experimental essentiality annotations (http://essentiality.ls.
manchester.ac.uk), which is searchable by multiple identifiers
and can produce lists of gene essentiality for download. We
believe that our mouse gene essentiality status predictions will be
useful for researchers seeking to create mouse mutants (a rapidly
expanding area of biological research due to genome editing
technology) (Singh et al., 2015), because researchers can quickly
determine whether their gene of interest is likely to be essential or
not. Owing to the conservation of function and essentiality status
between mouse and human genes, knowledge of mouse gene
essentiality will aid clinical geneticists seeking to interpret the
impact of genome sequence variants on phenotype, a need that is
rapidly increasing with the expanding use of genome and exome

sequencing in clinical diagnostics. Knowledge of the composite
set of essential genes of an organism is also of benefit for synthetic
biology (Rancati et al., 2018).

Upon comparing our predictions of mouse gene essentiality with
human gene essentiality annotations, we found a high degree of
correlation between predicted mouse non-essential and essential
genes and their human orthologues with known essentiality status.
Similarly, we found a strong correlation between experimentally
identifiedmouse non-essential genes and human known non-essential
genes. Larger discrepancies were found between mouse known
essential genes and human known essential genes, however, which
we propose is related to the differing methodologies used to identify
mouse and human essential genes, a hypothesis noted by others
(Bartha et al., 2018). Given the prominence of mouse models for the
study of human diseases (Rosenthal and Brown, 2007), an increased
understanding of whether discrepancies in gene essentiality between
these species represent biological differences or functional annotation
differences will improve the interpretation of mouse model data.

MATERIALS AND METHODS
Compilation of datasets
Our essential and non-essential mouse gene datasets have previously been
described (Kabir et al., 2017). We defined an essential gene as a gene
causing lethality prior to postnatal day 3 in a single gene knockout
experiment. Only single gene knockout (targeted deletion) experiments
were considered. If a gene had a lethal phenotype in any knockout
experiment, it was considered lethal, even if knockouts of other exons or on
other strain backgrounds, or mutations generated by methods other than
targeted deletion, did not have a lethal phenotype. IMPC data were
retrieved through the ‘phenotypes’ query on the IMPC website (Koscielny
et al., 2013), using the keywords ‘embryonic lethality’ for essential genes
and MP keyword terms previously chosen for MGI searches (Kabir et al.,
2017) for non-essential genes. IMPC subviable genes were obtained from
the Embryo Development Special Report accessed on their website
(Koscielny et al., 2013).

Alternative mouse mutagenesis-methodology data were collected from
the MGI database. MGI genes were filtered using terms ‘Viable’ and
‘Lethal’ and specifying ‘Null/Knockout alleles’, with all chromosomes and
generation methods selected, apart from ‘Targeted’, ‘Transgenic’ and
‘QTL’. Publications for genes retrieved with both ‘viable’ and ‘lethal’
keywords were manually assessed, allowing verification of genes as
essential or non-essential. Duplicate genes and those in training sets were
excluded. Genes essential in mouse embryonic stem cells were identified
from the literature (Elling et al., 2017).

Human essential genes (Blomen et al., 2015; Shamseldin et al., 2015;
Wang et al., 2015; Lek et al., 2016) and non-essential genes (MacArthur
et al., 2012; Kaiser et al., 2015; Sulem et al., 2015; Saleheen et al., 2017)
were retrieved from the literature. To compare human gene lists with mouse
datasets, mouse orthologues were manually retrieved from OMIM
(Amberger et al., 2015), HomoloGene at NCBI (NCBI Resource
Coordinators, 2016), GeneCards (v4.4.1) (Stelzer et al., 2016) and the
UCSC Genome Browser (Casper et al., 2017). Duplicate genes were
excluded, as were read-through genes and non-RefSeq UCSC genes [as
annotated in the UCSC genome browser (Casper et al., 2017)], along with
human genes without mouse orthologues.

Retrieval of gene features
Features including ‘gene length’, ‘transcript count’, ‘exon count’ and
‘transcript per million’ were computed based on data retrieved from
Ensembl BioMart (Yates et al., 2016) and UniGene (Pontius et al., 2003;
Stanton et al., 2003). The other genomic and protein-sequence-based features
were retrieved directly from Ensembl (Cunningham et al., 2015), UniProt
(UniProtConsortium, 2015), Pepstats (Rice et al., 2000) and SignalP (Petersen
et al., 2011; UniProt Consortium, 2015). Mouse PPI data were obtained from
the I2D database (Brown and Jurisica, 2005). In-depth descriptions of the
features collected have previously been described (Kabir et al., 2017).
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Dataset balancing
Because the essential and non-essential mouse gene training sets differed in
the number of genes, random subsampling with no replacement (Vitter,
1985) was used to select a class-balanced subset from the training data set
with no duplicate instances in the subset.

Discretisation
Discretisation (Han et al., 2011; Witten et al., 2016, 2011) of the numeric
features of the training dataset was performed using the ChiMerge algorithm
(Kerber, 1992) to remove noise and improve the speed of classifier training.
Two adjacent intervals of each feature were merged into bigger intervals
repeatedly, based on the chi-squared correlation of the 2 adjacent intervals
and the class attribute. Initially, for each numeric value of a feature, an
interval was created to contain the numeric value only. Then, a chi-squared
test was used to test the hypothesis that the class attribute is independent of
the 2 adjacent intervals. If the test was independent of the 2 adjacent
intervals, they were merged; otherwise, they remained separate. Merging all
pairs of adjacent intervals continued until the chi-squared value of every pair
of adjacent intervals was greater than the chi-squared value determined with
a significance level of 0.95.

Machine learning classifiers
In this study, the mammalian essential gene prediction problem was
formulated as a supervised binary classification problem. Given a mouse
gene p, we intended to predict the corresponding class y, such that p∈y (Chen
et al., 2012). We used Weka (version 3.6), a publicly available Java-based
machine learning software (Hall et al., 2009), to implement the predictive
classifier. We used naїve Bayes (Rish, 2001), J48 decision tree (Breiman
et al., 1984), SVM (Cortes and Vapnik, 1995), logistic regression and
Random Forest (Breiman, 2001) methods implemented in Weka as
classifiers. Classifiers were trained on a fixed number of mouse genes
labelled as essential or non-essential, each consisting of m features. Separate
test datasets were also created that have not been included in the training
datasets. We implemented 10-fold cross-validation on the training sets to
assess the performance of each classifier, followed by 10-fold cross-validation
on Test sets 1 and 2. Calculating the proportion of correctly predicted genes in
these test datasets validated the performance of classifiers.

For the RBF kernel SVM, we set C to 50 and experimented with different
values of gamma: 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005 and 0.0001. For RBF
kernel SVM and polynomial SVM, C is set to 50 because 50 is a common
value for cost. For gamma, we tested the values 0.1, 0.05, 0.01, 0.005, 0.001,
0.0005 and 0.0001 to find the best value. Similarly, we tested polynonmial
orders of 1, 2, 3 and 4. Polynomial kernel SVMs with the penalty term C
of 50 and different orders 1, 2, 3 and 4 were trained using 10-fold
cross-validation. For regularisation of logistic regression (LR), we used the
default setting that the regulariser is set to w2 and the ridge (penalty term) is
set to 10−8, where w is the weight vector of the LR. The default setting is the
most common setting for LR. We treated the categorical features (e.g.
subcellular localisations and types of proteins) of the gene essentiality
dataset as numeric features and coded the discrete features as integers. For
decision trees, we used the default parameter settings such that the
confidence factor is set to the default value 0.25 (the confidence factor is
used for pruning), and used the default C4.5 pruning instead of reduced error
pruning. For naïve Bayes classifier, we assumed that the distribution of each
attribute is Gaussian and used the probability density estimation to compute
the prior probabilities. We used Bayes theorem to compute conditional
probabilities.

Performance measures
Classifier performance was evaluated by 10-fold cross-validation analysis,
where each training dataset was randomly partitioned into 10 equal parts
with 9 parts being used for model training and the remaining part used
for testing. We used the cross-validation method to limit overfitting of
the classifier.

The performance of each classifier was determined from the total number
of essential genes predicted correctly (TP), essential genes predicted
incorrectly (FN), non-essential genes predicted correctly (TN) and
non-essential genes predicted incorrectly (FP), presented as a confusion

matrix. From the counts of each of these, 3 performance measures, including
the true-positive rate (recall or sensitivity; TPR), false-positive rate (FPR)
and the overall classification accuracy, as defined by the following
equations, were estimated:

TPR ¼ TP

TP þ FN
ð1Þ

FPR ¼ FP

FP þ TN
ð2Þ

Accuracy ¼ TP þ TN

TP þ TN þ FP þ FN
: ð3Þ

Further evaluation of classifier performance was achieved through the use
of ROC curves, which were generated by plotting the TPRs against the FPRs
at various threshold settings to present the probability of predicting true
positives as a function of the probability of predicting false positives (Huang
and Ling, 2005). TheAUCof the ROC curves was used to estimate the overall
prediction performance of the classifier, whereby an AUC of 1 represents a
perfect prediction and an AUC of 0.5 represents a random guess.

Feature selection algorithms
Feature selection was performed using the GA implemented in Weka. This
wrapper method relies on a fitness function, population size, crossover
probability, mutation probability and maximum number of generations to
select relevant features in relation to the chosen classifier. The fitness
function, generally defined as the accuracy of the chosen classifier,
measured the quality of the solution. We used the Information Gain feature
selection filter in Weka, which selects a subset of features from the pool of
all features (Han et al., 2011) to estimate the worth (rank) of a feature by
measuring its information gain with respect to a classification target. We did
not examine all possible combinations of features, but ranked the features
individually in order of significance to identify the most informative features
for classification.

Protein interaction network analysis
Four datasets of protein IDs corresponding to (1) known essential genes, (2)
predicted essential genes, (3) known non-essential genes and (4) predicted
non-essential genes were used to query the STRING database (Jensen et al.,
2009) for PPIs. We used the stringApp (v.1.1.0) (Szklarczyk et al., 2017)
plugin of Cytoscape (v.3.5.1) (Cline et al., 2007) to retrieve data from the
STRING database. We filtered out PPIs for which there is no experimental
evidence and those with a confidence score <0.4. Statistical analysis of the
resulting networks was conducted using NetworkAnalyser (v.3.3.2)
(Doncheva et al., 2012; Assenov et al., 2008) and the Cytoscape plugin
cytoHubba (Chin et al., 2014). Unlinked nodes were eliminated prior to
network analysis.

Functional classification and annotation of gene sets
Four web-based applications – DAVID (v6.8) (Dennis et al., 2003),
WebGestalt (2017 update) (Zhang et al., 2005), g:Profiler (Reimand et al.,
2007) and PANTHER (v11.1) (Mi et al., 2016) – were used for functional
evaluation of predicted and known genes, all utilising a Mus musculus
genomic background. For each tool, 4 mouse gene sets were separately
uploaded: (1) known essential genes, (2) predicted essential genes, (3)
known non-essential genes and (4) predicted non-essential genes.

DAVID’s functional annotation tool was employed, applying default
thresholds (unless otherwise stated in results). Enrichment data were collected
from DAVID’s ‘Tissue Expression’, ‘UP_Keywords’, ‘Chromosome’,
‘KEGG_Pathway’, ‘InterPro’, Pfam’, ‘BioGrid’, ‘GOterm_BP_Direct’,
‘GOterm_CC_Direct’ and ‘GOterm_MF_Direct’ categories, and the top 50
results were analysed for each dataset. DAVID’s ‘Related Term’ tool was
implemented, alongside biological knowledge, to place similar terms in groups.

WebGestalt’s Over-Representation enrichment Analysis (ORA) tool was
utilised (Zhang et al., 2005). Data for the top 25 most significant results for
GO BP, CC and MF non-redundant terms, chromosomal location, Wiki and
Panther Pathways, and Phenotype were retrieved. For g:Profiler (Reimand
et al., 2007), Kyoto Encyclopedia of Genes and Genomes (KEGG)
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pathways, and mouse sequence homologs of the Human Phenotype
Ontology and GO BP, CC and MF terms were retrieved.

Statistical over-representation was retrieved from PANTHER (Mi et al.,
2016) for PANTHER Protein Classes, PANTHER Pathways, GO BP
complete, GO CC complete and GO MF complete categories. Results were
manually analysed, and terms over-represented in one essentiality and
under-represented in either opposing essentiality gene-set were identified as
differentiating terms. Additionally, PANTHER and WebGestalt provided
visual and text-based GO Slim tools for functional classification of each
dataset. GO Slim pie charts representing the whole mouse genome and our
selected gene sets were generated from PANTHER, allowing comparative
analysis. GO annotations from DAVID, WebGestalt and g:Profiler were
combined to identify common significant GO terms enriched across
multiple outputs.

Functional annotation for reported essential and non-essential human
genes was completed using gene Ensembl IDs uploaded to DAVID. Six
gene sets were separately uploaded: (1) essential human genes, (2) non-
essential human genes, (3) essential mouse genes, (4) non-essential mouse
genes, (5) ‘matching essentiality’ essential human genes, and (6) ‘matching
essentiality’ non-essential human genes. A Homo sapiens background was
applied for human gene lists and annotation results were retrieved from the
same categories as stated above for mouse genes.

Genomic distribution of essential and non-essential genes
Utilising the MED (http://essentiality.ls.manchester.ac.uk), the total number
of genes on each mouse chromosome was retrieved, along with each gene’s
known or predicted essentiality. Genomic distribution analysis of essential
and non-essential genes within the entire mouse genome, partitioned into
known and predicted essentiality, was performed, and proportions of lethal
and viable genes on each chromosome were determined. Chromosomal
location and cytogenetic band enrichment for mouse essential and
non-essential genes was identified from WebGestalt and DAVID.

Essentiality model testing
Gene predictions were compared against blind and alternative mouse
mutagenesis genes, both with currently validated essentialities, by testing
known genes against their equivalent gene’s predicted essentiality.
Custom-written Python scripts (available on request) compared collated
gene lists with model gene predictions.

Statistics
All statistical analyses were carried out using R statistical software (R 3.0.1,
The R Foundation for Statistical Computing). For all database functional
analyses, the Bonferroni correction was applied to retrieve significantly
enriched terms, with a statistical significance threshold of P<0.05 (unless
otherwise stated). Distributions of plotted data were tested for normality
using the Shapiro–Wilk test. For normally distributed data, Welch’s 2-sided
t-test for unequal variance was implemented, whereas for non-normally
distributed data, the 2-sided non-parametric Wilcoxon Rank-Sum test was
used, to determine statistical significance.
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