
REVIEW SPECIAL COLLECTION: TRANSLATIONAL IMPACT OF RAT

Identifying genes for neurobehavioural traits in rodents: progress
and pitfalls
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ABSTRACT
Identifying genes and pathways that contribute to differences in
neurobehavioural traits is a key goal in psychiatric research. Despite
considerable success in identifying quantitative trait loci (QTLs)
associated with behaviour in laboratory rodents, pinpointing the
causal variants and genes is more challenging. For a long time, the
main obstacle was the size of QTLs, which could encompass tens if
not hundreds of genes. However, recent studies have exploited
mouse and rat resources that allow mapping of phenotypes to narrow
intervals, encompassing only a few genes. Here, we review these
studies, showcase the rodent resources they have used and highlight
the insights into neurobehavioural traits provided to date. We discuss
what we see as the biggest challenge in the field – translating
QTLs into biological knowledge by experimentally validating and
functionally characterizing candidate genes – and propose that the
CRISPR/Cas genome-editing system holds the key to overcoming
this obstacle. Finally, we challenge traditional views on inbred versus
outbred resources in the light of recent resource and technology
developments.

KEY WORDS: Genetics of behaviour, Quantitative trait loci, Rodent
resources

Introduction
According to a World Health Organization (WHO) survey of 14
countries in the Americas, Europe, the Middle East, Africa and Asia
(Demyttenaere et al., 2004), psychiatric disorders are relatively
common worldwide, although the overall prevalence varies widely
by country. Anxiety disorders are the most common disorders,
followed by mood, substance and impulse-control disorders.
Importantly, psychiatric disorders are typically associated with
impairment greater than that due to serious chronic physical
diseases (Demyttenaere et al., 2004).
Despite the high prevalence of psychiatric disorders and the

important individual and societal burden, relatively little is known
about the underlying biological mechanisms. As a result, diagnostic
categories such as those of the widely influential Diagnostic and
Statistical Manual of Mental Disorders (American Psychiatric
Association, 2000) and International Statistical Classification of
Diseases and Related Health Problems (World Health Organization,
2004) are defined based on symptoms (e.g. guilty ruminations,

suicidal thoughts, low mood) and signs (e.g. impaired cognitive
function, rapid speech).

Although such classification has enabled more reproducible
diagnoses and better clinical management, it does not ensure that the
diagnostic categories correspond to shared underlying causes and
mechanisms (Owen, 2014). For example, major depressive disorder
(MDD) is diagnosed if an individual presents with five out of nine
symptoms, one of which must be depressed mood or loss of
pleasure. Symptomatic heterogeneity suggests that psychiatric
disorders are likely to stem from various causes and mechanisms
(Casey et al., 2013). The same symptoms can also apply to different
diagnostic categories (Allardyce et al., 2007) so that, in addition to
heterogeneity within a disorder, common aetiologies between
disorders are likely.

Research has provided evidence that the match between diagnostic
categories and genetic causes is relatively poor. For example, genetic
heterogeneity in MDD is evident from the poor genetic correlation
between sexes [0.60, which is similar to the genetic correlation
between MDD and bipolar disorder (BPD) at 0.64] (Flint and
Kendler, 2014). Furthermore, several studies have provided evidence
for a shared genetic component across diagnostic categories,
including schizophrenia (SZ) and BPD (Lichtenstein et al., 2009;
Purcell et al., 2009; Cross-Disorder Group of the Psychiatric
Genomics Consortium, 2013a), SZ and MDD, BPD and MDD,
attention-deficit/hyperactivity disorder (ADHD) and MDD, and SZ
and autism spectrum disorders (ASD) (Cross-Disorder Group of
the Psychiatric Genomics Consortium, 2013a). Genome-wide
association studies (GWAS; see Glossary, Box 1) have also
identified individual genetic variants that contribute to multiple
psychiatric disorders (Psychiatric GWAS Consortium and Bipolar
Disorder Working Group, 2011; Cross-Disorder Group of the
Psychiatric Genomics Consortium, 2013b; Sullivan et al., 2012).

A further confounding factor is that healthy individuals may
experience ‘hallmark’ symptoms of psychiatric disorders, such as
delusions and hallucinations (Allardyce et al., 2007). Similarly,
quantitative traits that are extreme in affected individuals vary
substantially among healthy individuals (e.g. capacity for social
communication is impaired in ASD but varies in the general
population, Robinson et al., 2016). Importantly, variation of the
relevant traits in healthy and affected individuals arises from similar
genetic variants (Robinson et al., 2016; Lencz et al., 2014),
suggesting that psychiatric disease is likely to be the extreme of a
continuum rather than a discrete entity.

Therefore, there has been a push to reconsider the way in which
research on psychiatric disorders is carried out and to stop focusing
on current clinical diagnostic categories. Championing that vision,
the American National Institute of Mental Health (NIMH) launched
the Research Domain Criteria (RDoC) project (Insel et al., 2010),
which encourages researchers to use a wider range of, preferably
quantitative, measures related to mental health, including genetic,
molecular, cellular, circuit-level and individual-level measures, as
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well as the family environment and social context, and to study the
full spectrum of these variables in affected individuals and the
general population (Insel et al., 2010; Casey et al., 2013). The goal
of RDoC is that the classification of psychiatric disorders will, in the
future, be informed by findings from neuroscience and genomics,
and match aetiological processes. Furthermore, knowledge of the
biological processes underlying psychiatric disorders would allow
biological and behavioural tests to be used for diagnosis, prevention
and treatment.
With increasing focus on specific aspects of psychiatric disorders

rather than diagnostic categories, the importance of animal models
in psychiatric research is evident (Markou et al., 2009). Many
measures collected in humans to assess behavioural traits can be

readily collected in rodents (e.g. neuroimaging, startle test,
biochemical measurements), and measures that can only be
collected in animal models for practical or ethical reasons (e.g.
gene expression in the brain, response to psychosocial stress) may
also contribute to a better understanding of neurobehavioural
processes.

Of course, the way phenotypic variation arises will be important
when considering the relevance of animal models to psychiatric
research. Because most common psychiatric disorders have been
shown to arise from a large number of genetic variants and are
considered to be complex traits (see Glossary, Box 1), populations
of mice and rats that segregate a large number of naturally occurring
variants and present continuous phenotypic variation will be most
relevant.

In this Review, we highlight rodent resources that have shed light
on the genetic basis of behaviour and associated neurophysiological
traits. More specifically, we focus on the outcome that we believe is
of greatest interest to geneticists with a strong focus on disease,
namely the identification of genes associated with neurobehavioural
variation. Once genes have been associated with a trait, the
pathways, cell types and neural circuits that are involved can be
inferred, and potential therapeutic targets identified.

Because of our focus on complex behaviours and traits, we will
not discuss animal models created to assess the role of one gene in
isolation; instead, we will review rodent resources in which a large
number of genetic variants segregate and give rise to phenotypic
variation (for a review of both strategies and how they complement
each other, see Williams and Auwerx, 2015).

The same resources can be used for the study of behaviours as for
other complex traits. Indeed, although behaviours are ‘noisier’
phenotypes than average i.e. their heritability (see Glossary, Box 1)
is slightly lower than that of other complex traits both in mice
(Valdar et al., 2006b; Nicod et al., 2016; Parker et al., 2016) and rats
(Baud et al., 2014b; Rat Genome Sequencing and Mapping
Consortium, 2013), the effect sizes of quantitative trait loci
(QTLs; see Glossary, Box 1) are not significantly lower (Flint and
Mackay, 2009; Flint and Mott, 2008) or only very slightly lower
(Nicod et al., 2016; Parker et al., 2016) than the effect sizes of QTLs
for other complex traits.

Mouse and rat resources available to finely dissect the genetic
basis of complex traits have been extensively reviewed (Peters et al.,
2007; Flint, 2011; Flint and Eskin, 2012; Mott and Flint, 2013;
Gonzales and Palmer, 2014; Williams and Williams, 2016). These
reviews compare breeding schemes and relate them to genetic
characteristics such as the total number of variants segregating,
allele frequencies, rate of decay of linkage disequilibrium (a
measure of how wide unrecombined intervals are), regions with low
levels of polymorphism and specific analytic requirements. They
also provide a structured discussion of the advantages and
disadvantages of each population. By contrast, here we review
genetic studies of complex neurobehavioural traits that have used
these resources. We limit ourselves to resources with moderate to
high levels of recombination (see Glossary, Box 1) for the reasons
explained in the first section below, and finish by discussing the
increasing relevance of outbred resources (see Glossary, Box 1).

Low levels of recombination in a population prevent gene
identification
Gene identification typically starts with the mapping of QTLs and
proceeds with integrative approaches, as reviewed recently by
Moreno-Moral and Petretto (2016). A large number of QTLs for
behaviour have been mapped in rodents [Mouse Genome Database,

Box 1. Glossary of key terms
Complex trait: A phenotype that varies as a result of multiple genetic
and environmental effects and their interplay.
X% confidence interval (CI): Size of the genomic region that has X%
chance to contain the variant responsible for the QTL.
CRISPR/Cas: Clustered regularly interspaced short palindromic
repeats/CRISPR-associated proteins – a genetic engineering system
based on components of a prokaryotic immune system that can be used
to change single nucleotides or larger genomic fragments in any
genome.
Founder: An inbred strain or outbred stock from which a resource is
descended.
Genetic mapping: The process by which regions of the genome
associated with phenotypic variation are identified.
Genome-wide association study (GWAS): The genome-widemapping
of single-nucleotide polymorphisms (SNPs) associated with a particular
trait across many individuals.
Haplotype: An unrecombined genomic segment inherited from one of
the founders.
Hardy–Weinberg equilibrium: A variant is said to be in Hardy–
Weinberg equilibrium when the frequencies of the corresponding
genotypes are constant across generations. Unless a variant is subject
to strong evolutionary forces (such as selection or meiotic drive),
genotype frequencies will be approximately constant across generations
at the time scales we are considering here (years or decades).
Heritability: The proportion of phenotypic variance in a population that is
attributable to genetic effects.
Inbred strain: An inbred strain corresponds to animals that are
genetically identical (clones). It is derived by sister-brother mating for
many (>20 in mice) generations. In an inbred strain, all genetic loci are
homozygous.
LOD support interval: The logarithm of the odds (LOD) ratio provides a
measure of association between genotype and phenotype. The LOD will
peak at a QTL and drop as distance to the QTL increases. In some
circumstances the boundaries of a QTL can be defined based on the
LOD profile and the distance it takes for it to drop by 1 unit, which gives
90% chance that thus-delimited QTL encompasses the causal variant. A
1.5 LOD drop interval corresponds to 95% confidence that the QTL
encompasses the causal variant (Dupuis and Siegmund, 1999).
Outbred stock: Animals that are genetically diverse and unique.
Quantitative complementation:Amethod for testing the candidacy of a
gene at a QTL. See Flint et al. (2005) for a description of this complicated
test.
Quantitative trait locus (QTL): A locus in the genome found to be
associated with variation in a quantitative phenotype, such as height,
weight or ameasure of anxiety (for example howmuch an animal freezes
in response to a frightening stimulus). When the trait mapped is
expression level of a gene, QTLs are called eQTLs (for expression
QTLs) and classified as cis (cis-eQTL) when they are close to the gene
and trans (trans-eQTL) when they are distant to it.
Recombination event: The exchange of genetic material between two
homologous chromosomes during meiosis.
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(Bult et al., 2016), www.informatics.jax.org; Rat Genome Database
(Hayman et al., 2016; Shimoyama et al., 2014), http://rgd.mcw.edu/
], but the genetic variants and genes that mediate the effects of these
QTLs remain unclear (Flint et al., 2005; Flint and Mackay, 2009;
Parker and Palmer, 2011). The main reason for this is that low levels
of recombination exist in resources traditionally used for QTL
mapping, namely F2 intercrosses and backcrosses (see Table 1 for a
brief description of these populations).
Each chromosome in an F2 population results, on average, from

one recombination event between the two founder genomes,
meaning that large segments of DNA are unrecombined
(Glossary, Box 1 and Fig. 1A). As all genetic variants within an
unrecombined segment are perfectly correlated, if one variant is
associated with a given trait then the other variants in the segment
will also be associated with that trait (Fig. 1D). As a result, F2 QTLs
typically encompass a very large number of genetic variants and
tens if not hundreds of genes, all of which are candidate mediators of
the QTL effect.
In order to narrow down the list of candidates, common strategies

include integrating sequence information and/or expression data
with QTLs. Sequence information available for the parental strains
of the cross (Keane et al., 2011; Yalcin et al., 2011; Baud et al.,
2014b; Hermsen et al., 2015) enables identification of all the
variants that segregate in the cross. Those variants whose effect is
predicted to be deleterious for protein structure or function (e.g.
using the variant effect predictor, http://www.ensembl.org/info/
docs/tools/vep/index.html) can be deemed likely to mediate the
QTL effect.
Another way to prioritise among the variants and genes at a QTL

is to use expression data, usually obtained from mRNA present in a
relevant tissue. Expression can be mapped to identify which of the
genes at the QTL are regulated by a local variant i.e. genes with a
cis-eQTL (see Glossary, Box 1). Such genes are usually prioritized
over genes without a cis-eQTL as they could mediate the QTL
effects through changes in gene expression (e.g. gene A in Fig. 1).
The strength of the correlation between gene expression and
behaviour is often used to select candidate genes (Fig. 1D), but there

are caveats to this strategy (Doss et al., 2005; Mehrabian et al.,
2005).

The strategies presented above have limited efficacy because
typically, an F2 QTL encompasses a large number of deleterious
variants (e.g. Parker et al., 2012) and about 10% of genes have a cis-
eQTL in any tissue (Schadt et al., 2003). In addition, both strategies
focus on protein-coding genes and make many assumptions, and
therefore risk wrongly discarding the true genetic factors underlying
the QTL. It is possible to alleviate these problems bymapping loci at
higher resolution, thus reducing the number of candidate genes.

One way to obtain higher mapping resolution is to increase the
sample size. However, obtaining adequate recombination levels
with an F2 population would require phenotyping and genotyping
of more than 10,000 animals (Mott and Flint, 2013). Breaking down
one or a few intervals of interest into smaller unrecombined intervals
by creating congenic lines (Table 1) is another option; however,
such attempts have often seen the QTL disappear as it breaks down
into two or more QTLs with smaller effects that cannot be detected
(Flint and Mott, 2001; Legare et al., 2000). Finally, higher
recombination levels can be achieved by crossing for multiple
generations, as each chromosome will accumulate on average one
meiotic recombination event each generation. Many breeding
schemes exploit this process, and below, we discuss results
obtained using the resulting populations.

Mapping neurobehavioural traits in moderately to highly
recombinant populations
Advanced intercross lines (AILs) (Darvasi and Soller, 1995) are
generated from two inbred founders by multiple generations of
intercrossing (Table 1). In laboratory rats, a seventh-generation
(F7) AIL descended from the experimental autoimmune
encephalomyelitis (EAE, a model for multiple sclerosis)-
susceptible DA and EAE-resistant PVG.1AV1 inbred strains was
used to fine-map QTLs previously detected in an F2 cross. Of 1068
phenotyped rats, 152 affected and 162 unaffected animals were
genotyped and used to map QTLs that were 1.3 Mb, 3 Mb and
5.5 Mb wide (1 LOD support intervals; see Glossary, Box 1).

Table 1. Rodent resources for complex traits genetics

Resource Founders No. founders Breeding scheme
Inbred or
outbred

Backcross (BC) Classical inbred strains 2 2-way cross then backcross to founder strain Outbred
Second generation intercross
(F2)

Classical inbred strains 2 2-way cross then one intercross Outbred

Congenic line Classical inbred strains 2 2-way cross then multiple rounds of backcross and selection to
obtain a line different from one of the founder strains at a
single locus

Inbred

Advanced intercross line (AIL) Classical inbred strains 2 2-way cross then multiple generations of intercross Outbred
Heterogeneous stock (HS) Classical inbred strains > 2 (usually 8

or 4)
Rotational breeding over many generations Outbred

Recombinant inbred line (RIL) Classical inbred strains 2 2-way cross, intercross for one or more generations, then
inbreeding

Inbred

Pre-collaborative cross (pre-CC) Five classical and three wild-
derived inbred strains

8 2-way, 4-way, 8-way cross then partial inbreeding Partially
inbred

Collaborative cross (CC) Five classical and three wild-
derived inbred strains

8 2-way, 4-way, 8-way cross then inbreeding Inbred

Diversity outbred stock (DO) Five classical and three wild-
derived inbred strains

8 2-way, 4-way, 8-way cross, partial inbreeding then
pseudorandom breeding

Outbred

Commercially available outbred
stock

Unknown ‘Swiss’ stock Pseudorandom mating Outbred

Reduced complexity cross (RCC
or coisogenic cross)

Substrains (i.e. very closely
related strains)

2 2-way cross then one intercross Outbred

Selection lines An outbred population – Selection of animals with extreme phenotypes, used as
breeders for the next generation, over many generations

Outbred
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Additional gene expression data, sequence data and prior
knowledge were used to prioritise the genes at the QTL
(Becanovic et al., 2006; Jagodic et al., 2004; Sheng et al., 2005).
A study of basal and methamphetamine-induced locomotor

activity used 688 mice from a 34th-generation AIL descended from
inbred strains SM/J and LG/J (Cheng et al., 2010). The authors
report three genome-wide significant QTLs 0.5, 1.56 and 2.07 Mb
wide (2 LOD support intervals), encompassing 1, 0 and more than
12 genes, respectively. Csmd1 (CUB and Sushi multiple domains
1), which was identified in this study was knocked out for follow-up
analyses but no effects on locomotor activity were detected (Distler
et al., 2012). Another analysis of an eighth-generation AIL
identified six QTLs ranging from 1.5 to 50 Mb in size, with a
median of 15.6 Mb (1.8 LOD support intervals) (Parker et al.,
2012). The studies highlighted here indicate that QTLs mapped
in AILs can enable gene identification, provided enough
recombination events have accumulated in the line over the
generations.
Panels of recombinant inbred (RI) strains have traditionally been

derived from inbreeding F2 animals (Table 1). In rats, two RI panels
exist. The BXH/HXB panel was generated by reciprocal crossings
of the spontaneously hypertensive rat (SHR/Ola) and the Brown
Norway (BN-Lx/Cub) strains (Pravenec et al., 2004) and now
contains 30 strains (Hubner et al., 2005). This panel has been used
to map multiple behavioural traits, including startle, anxiety,

locomotion, conditioned taste aversion, alcohol consumption and
learning (Printz et al., 2003; Conti et al., 2004; Bielavská et al.,
2002; Tabakoff et al., 2009; Vanderlinden et al., 2014; Stuchlik
et al., 2012). Although QTLs mapped in these studies were too large
to allow identification of candidate genes, the panel was
successfully included in a broader genetic study that identified a
determinant of cardiac hypertrophy and mitochondrial function
(McDermott-Roe et al., 2011). The second panel is derived from
LE/Stm and F344/Stm and consists of 34 strains. Mapping of 109
traits, including neurobehavioural traits, was performed in this
panel, but QTL intervals were again too large (>20 Mb) to allow
gene identification (Voigt et al., 2008).

In mice, larger RI panels exist: the LXS panel is descended from
inbred long sleep (ILS) and inbred short sleep (ISS) strains, which
were selected for their ethanol sensitivity, and consists of 77 strains.
Using 60 of those and more than 10 mice per strain, Bennett et al.
(2015) mapped the genetic determinants of acute functional
tolerance to the hypnotic effects of alcohol and identified a
23 Mb QTL (90% Bayesian credible interval) that included 716
genes. Similarly, large QTLs were mapped in a study of hearing loss
in the same panel (Noben-Trauth et al., 2010). The BXD panel,
descended from the inbred strain C57BL6/J, which is the mouse
reference strain, and another strain, DBA/2J, contains around 120
lines that are almost fully inbred and are available from the Jackson
Laboratory, and another set of 30-40 that are being inbred by
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Fig. 1. Low levels of recombination preclude identification of genes associated with behavioural phenotypes. (A) Large unrecombined genomic
segments in F2 crosses. Three pairs of homologous chromosomes, from three individuals of an F2 cross, are represented. As each chromosome presents on
average only one recombination event, large segments of DNA are unrecombined in F2 crosses (even with hundreds of individuals). One such segment is
highlighted in green. (B) Example scenario for behavioural variation. Variation in behaviour arises from differences in expression of gene A driven by a variant in
cis of the gene. Gene A lies in the unrecombined segment shown in green in panel A with many other genes, four of which (gene B to gene E) are presented in
this scenario. Expression of genes B and C is controlled by variants in cis, while expression of genes D and E is not. In reality the proportion of genes with a cis-
eQTL in any given tissue is about 10%. (C) Primary analysis: QTLmapping of the behaviour and of the genes encompassed by the behavioural QTL. The position
along the chromosome is shown on the x-axis and spans the green unrecombined interval. Genes A to E are represented by arrows. The y-axis shows the
significance of the association between genotype and trait (behaviour or gene expression level). The red curve shows the shape of the association curve for
behaviour and genes A, B and C, the blue curve that for genes D and E. The shape of the red curve denotes a QTL for the behaviour and a cis-eQTL for each of
genes A, B, C. As genes A, B and C have a cis-eQTL, they will be considered candidate causal genes for the behavioural QTL effect. (D) Gene-behaviour
correlation analysis to further prioritise candidate genes. The ovals represent the spread of the data points (not shown); hence the tighter the oval, the stronger the
correlation between the variables on the x- and y-axes. A correlation between expression of gene A and behaviour is likely to exist as a result of the causal
path shown in panel B. As genes B and C also have cis-eQTLs and the underlying genotypes are perfectly correlated with the genotypes of the cis-eQTL for gene
A (no recombination in the green interval), a correlation will likely exist between expression of genes B and behaviour and expression of gene C and behaviour.
The strength of these correlations will depend on many parameters, including non-local genetic and non-genetic effects. Hence, prioritising genes A, B, C
based on the strength (or significance) of the correlations is not straightforward, and is subject to caveats.

376

REVIEW Disease Models & Mechanisms (2017) 10, 373-383 doi:10.1242/dmm.027789

D
is
ea

se
M
o
d
el
s
&
M
ec
h
an

is
m
s



Williams, Lu and colleagues at the University of Tennessee Health
Science Center (UTHSC) (Pandey and Williams, 2014). In this
panel, 42 of the strains are derived from an F2 cross and the
remaining are derived from F9 to F14 AILs, which improved the
mapping resolution achievable with the panel (Peirce et al., 2004). It
should be pointed out that very few studies make use of the full
panel: many studies use only 30-40 strains and multiple replicates
within each strain, resulting in very large QTLs (Putman et al., 2016;
Harenza et al., 2014; Parsons et al., 2012; Ye et al., 2014; Young
et al., 2016; Dickson et al., 2016).
Using 62 BXD strains, Carhuatanta et al. (2014) mapped five

QTLs for fear and anxiety under chronic stress conditions. The size of
the QTLs (1 LOD support intervals) ranged from 2.5 to 30.2 Mbwith
a median of 12.1 Mb. The narrowest interval encompassed only 15
genes, but no strong candidate gene was identified. Using 72 strains,
Cook et al. (2015)mapped twoQTLs 8.5 and 10 Mb in size (1.5 LOD
support intervals) for anxiety-related traits following ethanol
injection. Integrative approaches led the authors to prioritise four
genes. Pandey and Williams (2014) used RNA expression data to
show that the distance between the top cis-eQTL marker and the
cognate gene could be as small as 0.6 Mb using 69 BXD strains. This
demonstrates that the full BXD panel should enable causal genetic
variants to be mapped very precisely. Using more strains would also
improve the experimental power to detect QTLs. It is unclear,
however, what the optimal number of strains and replicates is for a
fixed number of mice. Avery important advantage of the BXD panel
is that a large amount of freely available phenotypic and molecular
data that have been accumulated over the years on BXD strains and a
web-based statistical analysis suite exists that can integrate these data
to prioritise genes at QTLs (www.GeneNetwork.org). In this respect,
the BXD panel is a unique resource.
AILs and RI panels exist that are descended not from two but four

or eight inbred founder strains. They are respectively referred to as
heterogeneous stocks (HS) (McClearn et al., 1970; Demarest et al.,
2001; Hansen and Spuhler, 1984; Hitzemann et al., 2009; Iancu et al.,
2010) and the collaborative cross (CC) (Churchill et al., 2004)
(Table 1). HS are descended from the founder strains through usually
more than 50 generations of outbreeding, which contributes to
increasingmapping resolution. Mapping in HS and other populations
descended frommore than two inbred founders typically proceeds by
reconstructing the chromosomes of the HS animals as mosaics of the
founder genomes (Fig. 2) and mapping using haplotypes (Glossary,

Box 1) rather than genotypes. QTL intervals obtained are typically
4Mbwide (Rat Genome Sequencing andMapping Consortium et al.,
2013; Valdar et al., 2006a).

Because the complete sequence of the strains from which HS are
derived is now available both in mice (Keane et al., 2011; Yalcin
et al., 2011) and rats (Baud et al., 2014b; Hermsen et al., 2015),
‘merge analysis’ can be used to refine the mapping and prioritise
variants and the genes affected for further study (Mott et al., 2000;
Rat Genome Sequencing and Mapping Consortium et al., 2013;
Valdar et al., 2006a). Briefly, merge analysis proceeds by
identifying variants whose strain distribution pattern amongst the
founder strains of the cross is consistent with the QTL effect.
Importantly, such prioritisation is based solely on association
statistics and therefore makes no assumption as to the mechanisms
underlying the QTL (e.g. changes in gene expression, altered
protein sequence). Anxiety and EAE-related traits have been
investigated in the rat NIH HS (Hansen and Spuhler, 1984) and
QTLs were identified where a single candidate gene was identified
by merge analysis (Rat Genome Sequencing and Mapping
Consortium et al., 2013; Baud et al., 2014a): Ctnnd2 (catenin
delta-2) is associated with conditioned anxiety and Fam198b is
associated with weight loss as a result of EAE. A role for Ctnnd2 in
anxiety in mice is supported by altered behaviour of Ctnnd2-
knockout mice in contextual fear conditioning paradigms (Israely
et al., 2004) and an association between CTNND2 and anxiety has
been found in humans too (Nivard et al., 2014). Ctnnd2 therefore
seems to contribute to anxiety in multiple species (rats, mice,
humans). At other QTLs mapped in the rat NIH-HS, additional
information on the variants segregating at the QTL, namely their
predicted effect on protein function, was used to identify candidate
genes: MHC class II genes RT1-Da and RT1-Bb were identified as
potential contributors to EAE-associated weight loss. In mice,
independent mapping of emotionality in the Boulder and the
Northport HS (Talbot et al., 1999; Valdar et al., 2006a) identified
the same 2 Mb region around Rgs2, a gene that was proven to
underlie a QTL for emotionality in commercially available outbred
mice (described below, Yalcin et al., 2004). Fine-mapping of
anxiety-related traits in the Northport HS together with analysis of
functional gene annotations and testing of a conditional mutant mice
provided evidence that actin filament depolymerisation and
expression of Cofilin-1 (Cfl1) in the ventral hippocampus may
mediate anxiety (Goodson et al., 2012).

WN/N
WKY/N

MR/N
M520/N
F344/N
BUF/N

BN/SsN
ACI/N

45 50 55 60
Chromosome 1 (Mb)
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4
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7

Fig. 2. Reconstruction of the chromosomes of an HS rat as a probabilistic mosaic of the eight founder genomes. A 16 Mb region of chromosome 1 is
represented (x-axis). The figure describes the probability that the pair of homologous chromosomes is descended from each of the eight founders (y-axis) using a
colour code (white: 0; red: 2; yellow ∼1). Seven sub-segments (labelled 1-7) can be identified based on breaks in the colour pattern. The first sub-segment (45-
45.5 Mb) has a probability of 2 (maximum probability) to be descended from the founder ACI/N; this means that we can be confident both homologous
chromosomes are descended from that founder. Similarly, both chromosomes are descended from BN/SsN in the second segment and fromWKY/N in the third
segment. The fourth segment shows equal probability (probability of 1) to be descended from WN/N and M520/N; this can be interpreted either as one
chromosome is descended from WN/N and the other from M520/N or those two founders are similar in that region and so we are unsure whether both
chromosomes are descended from one or the other founder. Both chromosomes are descended fromWKY/N in segments 5 and 7, and they are descended from
BUF/N and/or ACI/N in segment 6. This fragmented pattern of genomic inheritance is referred to as ‘mosaic’. The probabilities can be used as input to the
statistical models used to map QTLs.
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The rat NIH-HS was used to derive replicated high- and low-
alcohol-drinking lines through bi-directional selection (Foroud
et al., 2000) (Table 1). Subsequent mapping of alcohol preference
identified QTLs that were too large for gene identification but,
combined with an analysis of signatures of selection, the selection
lines pointed to specific genes (Grin2a, Cyp4f18, Myo9b, Pgls and
Fam129c) (Lo et al., 2016), illustrating the potential of this
combined approach.
The CC is a panel of recombinant inbred strains descended from

eight inbred founders including three wild-derived inbred strains,
which ensure a very high level of genetic diversity and variation in
almost any trait of interest (Churchill et al., 2004). Interestingly, the
wild-derived strains contribute genetic variants that cause
anomalous behaviour in CC mice (in comparison with classical
laboratory mice) with practical consequences, thus care is required
when interpreting behavioural data (Chesler, 2014). Published
studies have so far mostly used pre-CCmice, i.e. mice from partially
(∼75%) inbred lines in the CC breeding colonies (Table 1). Using
pre-CC mice, high mapping resolution was achieved across a range
of phenotypes and molecular traits. QTLs for reproductive,
behavioural, physiological and morphological traits were 4 Mb
wide on average (1.5 LOD support intervals) (Philip et al., 2011).
Philip et al. (2011) reported that the QTL interval detected for
‘activity after sleep deprivation’ harbours only three positional
candidates: a microRNA and two genes:Ntm (neurotrimin), a neural
cell-adhesion molecule that plays a role in brain development and
Snx19 (sorting nexin 19), which possesses a regulator of G protein-
coupled receptor signalling (RGS) domain. The same authors
identified a QTL interval for thermal nociception comprising just
six genes: Slit2, Pacrgl, Gpr125, Dhx15, Sod3 and Kcnip4.
Large pre-CC studies typically used many lines and one or few

mice per line, suggesting that more lines and fewer replicates per
line may be the best design for genetic mapping. Breeding of pre-
CC mice is difficult and many lines have gone extinct (Threadgill
et al., 2011; Chesler et al., 2008). A subset of 75 (as of time of
writing) extant lines have reached a sufficient degree of inbreeding
and meet criteria to be distributed to all investigators [available
lines are updated at www.csbio.unc.edu/CCstatus/index.py?run=
AvailableLines; see also Morgan and Welsh (2015) for informatics
resources available to analyse CC data]. As this number is much
lower than the number of lines used in pre-CC studies (∼250 in
pre-CC studies) and because CC lines have different genetic
characteristics compared with pre-CC lines, the potential of CC
mice needs evaluating. CC lines that are available to all investigators
have been used in a very limited number of published studies to date
and these studies used only a subset of all currently available lines
(e.g. 16 in Mao et al., 2015). Thus, the potential of currently
available CC lines to allow identification of genes associated with
behaviour and other complex traits is unclear.
The CC panel – and indeed any recombinant inbred panel – can

further be used by intercrossing CC lines (Graham et al., 2015;
Rasmussen et al., 2014) or crossing CC lines to an inbred strain with
a genetic variant of interest to identify modifiers of the variant
(Chitsazan et al., 2016).
An outbred population of mice called diversity outbred (DO)

stock (Svenson et al., 2012; Churchill et al., 2012) was also derived
from pre-CC lines (Table 1). A website has been set up to host DO
data and support their analysis (do.jax.org; see also Morgan and
Welsh, 2015; Gatti et al., 2014). A total of 38 behavioural measures
related to activity, anxiety and response to novelty were mapped in
283 DO mice from generations 4 and 5. Five significant QTLs were
identified, with 1.5 LOD support intervals ranging from 1 to 7 Mb

(Logan et al., 2013). A QTL for climbing frequency during the tail
suspension test (a measure described by the authors as one of
wildness rather than depressed mood, which the test is traditionally
used to measure) encompassed only five genes. Fine-mapping by
identifying those variants at the QTL that have a strain distribution
pattern that is consistent with the QTL effect in the founder strains (a
similar approach to merge analysis) failed for this and some of the
other QTLs, because variants with the appropriate strain distribution
pattern were found to populate the entire QTL region (Logan et al.,
2013). This situation is expected to be common with DO QTLs as a
result of wild-derived founder strains being very different from each
other and from the five classical inbred founder strains, and because
wild-derived alleles drive most of the QTLs. As DO and CC share
the same founders, this situation is also common in CC QTLs
(Durrant et al., 2011). As mentioned and illustrated in Logan et al.
(2013), wild-derived genetic variants also cause DO mice (like CC
mice) to behave ‘inappropriately’ on certain tests (e.g. climbing in
the tail suspension test), thus warranting care in the analysis and
interpretation of the corresponding data.

Although both CC and DO were designed to present as much
genetic variation as possible, an opposite strategy led to the
development of reduced complexity crosses (RCC, also called
coisogenic crosses). RCC are crosses of two closely related strains,
typically two strains that are descended from a single inbred strain
through independent evolution in different laboratories (Table 1).
Kumar et al. (2013) observed differences in cocaine response
between C57BL/6J, a C57BL/6 strain established and maintained at
the Jackson Laboratory since 1948, and C57BL/6N, a C57BL/6
strain established at NIH in 1951. Subsequent mapping in an F2
cross identified a QTL that accounted for 61% of the genetic
variance (i.e. the phenotypic variation of genetic origin). The QTL
interval was 22 Mb wide, which in any other cross would have
precluded identification of candidate genes. However, because there
is very little genetic variation between the two founder strains, a
single genetic variant (not gene) affecting the protein sequence
within the QTL interval was suspected to cause the QTL effect. This
variant encodes a serine-to-phenylalanine missense mutation in
Cyfip2 (cytoplasmic FMRP-interacting protein 2), a gene implicated
in Fragile-X mental retardation.

Kumar et al. (2013) followed up on this candidate gene by
measuring the stability of the corresponding protein in the founders
C57BL/6J and C57BL/6N, and by behavioural, histological and
electrophysiological profiling of a Cyfip2 mouse knockout. All
analyses supported a role for Cyfip2 in the response to cocaine
exposure. This study illustrates how crosses where only a few
genetic variants segregate can solve the recurrent problem of
translating QTLs into information about causal genes and variants.
Importantly, this study also shows that in RCC-based studies, the
size of QTL intervals is not a good indication of the potential to
identify causal variants and genes (Williams and Williams, 2016),
as it is limited by genotyping density rather than recombination
levels.

Additional phenotypes including behaviours have been shown to
vary across C57BL/6 substrains (Simon et al., 2013; Khisti et al.,
2006; Mulligan et al., 2008; Kirkpatrick and Bryant, 2014) and are
amenable to genetic mapping. Substrains also exist in the laboratory
rat and the genetic variants that segregate between some of them
have been catalogued (Atanur et al., 2013; Hermsen et al., 2015),
allowing genetic study of phenotypic differences (Zhang-James
et al., 2013).

The last type of resourcewewill review is commercially available
outbred rats and mice, which refers to animals that have been
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bred by commercial vendors for decades, primarily for use in
pharmacological studies (Table 1). These populations are typically
maintained using an outbreeding regime in order to preserve genetic
diversity. For this reason, they should never be called ‘strains’ as a
strain is the result of many generations (usually 20) of inbreeding.
Moreover, a review of commercially available mice by Yalcin et al.
(2010) highlighted important genetic differences between colonies
of the same stock, where colony refers to ‘a population of mice
maintained as a mating population at a single location’, and stock
refers to ‘a collection of colonies that are given the same stock
designation by the breeders’. Thus, colony is the unit of interest for
genetic studies using commercially available outbred mice, and the
same is likely to be true for rats. Yalcin et al. (2010) investigated
genetic characteristics that are important for genetic mapping
(in particular, rate of linkage disequilibrium decay and minor
allele frequencies) of 66 available colonies, providing valuable
information to those wishing to choose a colony for genetic
mapping. Prior to this study, 729 mice from the HsdOla:MF1-UK
colony (nomenclature according to Yalcin and Flint, 2012) had been
used to fine-map a chromosome-1 QTL for anxiety in mice (Yalcin
et al., 2004). The study led to the identification of a regulator of G-
protein signalling, Rgs2, as a strong positional candidate, and
confirmed that it accounted for some of the QTL effect by
quantitative complementation (Glossary, Box 1).
In 2016, two studies were published that investigated the

genetic basis of a variety of complex traits, including many
neurobehavioural traits, in commercially available outbred mice
from the Crl:CFW(SW)-US_P08 (CFW) colony (Nicod et al., 2016;
Parker et al., 2016). The size of the 95%CI for the 255QTLsmapped
by Nicod et al. (2016) using ∼1800 mice ranged from 0.01 to
7.33 Mb, with a mean at 1.50 Mb and 43% of intervals smaller than
1 Mb (the size of CIs was not reported by Parker et al., 2016). It
constitutes the highest mapping resolution achieved genome-wide in
any rodent resource thus far. In the study by Nicod et al. (2016), 7
QTLs for neurobehavioural traits encompassed a single gene, thus
identifying 7 very strong positional candidates: (1) Glutamate
receptor metabotropic 7 (Grm7) was associated with total distance
travelled in elevated plus maze (see Ellenbroek and Youn, 2016 for a
description of this test) and a role forGrm7 in locomotor activity in a
new environment is supported by evidence from a mouse knockout
(Cryan et al., 2003). (2) Unc-13 homolog C (Unc13c) was associated
with the number of long (>1 min) sleep episodes, and there is also
evidence for differential expression of the human orthologue in
individuals with poor sleep quality (Reddy et al., 2014). (3)Met and
(4) Rtkn2 were associated with startle pulse reactivity; (5) Ppargc1a
with number of long (>1 min) sleep episodes; (6) Adarb2with basal
home cage activity and (7) Pcdh17 with total distance travelled in
elevated plus maze, although there was no independent evidence for
a role of these genes in these phenotypes.
In addition to collecting multiple behavioural phenotypes related

to conditioned fear, anxiety-like behaviour, methamphetamine
sensitivity and prepulse inhibition on ∼900 mice, Parker et al.
(2016) measured gene expression in a subset of the mice in the
hippocampus (n=79), striatum (n=55) and prefrontal cortex (n=54).
Integrating QTLs for behavioural and gene expression traits, they
prioritised those genes at QTLs that had a cis-eQTL in a relevant
brain region and whose expression was correlated with the
behaviour. Azi2 (5-azacytidine-induced gene 2) was the best
candidate gene at a QTL for methamphetamine sensitivity, and
Zmynd11 (zinc finger, MYND domain-containing 11) at a QTL for
anxiety-like behaviour. Zmynd11 has independently been suggested
to be involved in various psychiatric disorders (Coe et al., 2014).

Commercially available outbred rats also exist, but the genetic
characteristics of the different colonies have not yet been assessed,
nor have such rats been used in mapping studies.

We recapitulate in Table S1 the 54 significant QTLs reported in
the studies reviewed above and that have led to the identification of 1
to 5 positional candidate genes. This table demonstrates that the
genetic determinants of behaviour can now be mapped with high
precision both in rats and mice. Importantly, we have not reported in
Table S1 genes cloned using congenic strains. Those would only
strengthen our point, however, which is that the time is over when
high numbers of positional candidate genes at QTLs were the
limiting factor for the usefulness of rodent models in genetic studies.
What seems to be the limiting factor is our ability to follow up on
narrow QTLs with experimental validation and functional
characterization, as discussed below.

Validation of QTLs: challenges and opportunities
Candidate genes have been followed up for only three out of 54
QTLs (for a fourth QTL, there was prior evidence confirming a role
of the candidate gene Ctnnd2). The first case is that of Rgs2, a gene
associated with anxiety in the mouse Northport heterogeneous
stock. Its contribution to the QTL was confirmed by quantitative
complementation (Yalcin et al., 2004). The second case is Csmd1, a
gene associated with locomotor activity in a 34th-generation AIL
(Cheng et al., 2010). In this case, no effect of the gene on locomotor
activity was observed in the corresponding knockout model (Distler
et al., 2012). The third example is Cyfip2, a gene associated with
cocaine response in a RCC between the C57BL/6J and C57BL/6N
substrains (Kumar et al., 2013). Follow-up included demonstrating
differential stability of CYFIP2 between the founder strains, and
histological, electrophysiological and behavioural testing of a
Cyfip2 knockout.

Why are QTLs so difficult to follow up on? Firstly, there is ever
increasing evidence, mostly from human genetics studies, that the
mechanisms of genetic control are not straightforward. In line with
this, 43% of trait-associated SNPs in humans lie in intergenic
regions and 45% lie in introns (Hindorff et al., 2009); intronic
variants have been shown to regulate distant genes in some instances
(Rask-Andersen et al., 2015); finally, there is also mounting
evidence that QTLs often arise from multiple variants and possibly
multiple genes (Rat Genome Sequencing and Mapping Consortium
et al., 2013; Allen et al., 2010). As a result, investigators may have
limited confidence in the variants or genes they identify as
candidates at QTLs.

A second difficulty lies in creating a genetically engineered
knockout model in order to validate a candidate gene. Until recently,
knockout models were available for only a few genes, and creating
a knockout model was very time- and resource consuming.
However, things are changing: first, more and more knockouts are
becoming available through a very large international consortium –
the International Mouse Phenotyping Consortium (http://www.
mousephenotype.org/); secondly, the recent advent of the CRISPR/
Cas technology for genome editing (Glossary, Box 1) has made it
possible for individual laboratories to easily create their own,
personalised knockout model (Barrangou, 2014). We refer the
reader to three reviews on CRISPR/Cas technology, which include a
comparison with ZFN and TALEN technologies (Gaj et al., 2013;
Kim and Kim, 2014; Sander and Joung, 2014). In brief, the
simplicity and high efficiency of the CRISPR/Cas system makes it a
very attractive alternative to traditional knockout procedures.

In the future, it is possible that knockouts will not be the go-to
models for following up on QTLs. Indeed, variants underlying
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QTLs have subtle effects that loss-of-function models poorly
recapitulate, and variants associated with complex traits have been
shown to often sit outside the protein-coding regions. Thus, it may
be more appropriate to validate variants rather than genes. CRISPR/
Cas technology permits replacement of specific single nucleotides
and addition or deletion of specific sequences. For example,
Yoshimi et al. (2014) showed that they could revert each of three
mutations of F344 rats (albino, non-agouti and hooded). Thus,
CRISPR/Cas opens new avenues for follow up of QTLs through
variant editing. Unfortunately, even the highest mapping resolution
achieved to this day leaves tens if not hundreds of variants segregating
at most QTLs. To narrow down the list of candidate variants to a
tractable number (10, 20 maybe for CRISPR), one can use additional
information regarding the position of the variants (e.g. lying in a
promoter or at a splice site), their predicted effect on protein structure
(e.g. predicted to affect bindingwith DNA), functional evidence from
the mouse ENCODE project (www.mouseencode.org/), or from
analysis of evolutionary constraints, for example.
Finally, an added difficulty of validating a QTL using a

genetically engineered model is the genetic background on which
the mutant is created. The same mutation may have observable
effects in one background but not in another (Holmes et al., 2003)
and it may even have opposing effects in different backgrounds
(Sittig et al., 2016) Therefore, when the goal is to validate a QTL, a
mutant should ideally be created on the background in which the
QTL was detected. Unfortunately, in all mapping populations
except for congenic lines, genetic variants exist not only in the QTL
interval but everywhere in the genome; this means that each animal
or strain of a mapping population represents a unique genetic
background and there is not a single background on which the QTL
should be placed. One solution is to place QTL alleles on multiple
genetic backgrounds representative of the original population. For
example, the same mutation could be introduced in multiple DO
mice and mutant DO mice compared with non-modified DO mice.
This expensive validation strategy will maximize the investigators’
chances to replicate the QTL effect, and will have the added benefit
of increasing the generalisability of the results to multiple genetic
backgrounds – an important first step towards applying the
information to humans (Sittig et al., 2016). The efficiency of the
CRISPR/Cas technology in seemingly any background is yet
another major advantage of this technology, which truly seems to
hold the key to the future of animal model-based investigation of
complex traits.

Inbred versus outbred resources
In light of the success of outbred resources in precisely mapping
phenotypic variation, we wish to discuss what has been seen as
unique advantages of inbred resources. Inbred resources include RI
panels derived from two or more progenitors and combinations of
inbred and RI strains [e.g. the hybrid mouse diversity panel, HMDP
(Bennett et al., 2010)]; outbred resources include AIL, HS, DO and
commercially available outbred stocks. Traditionally, the main
selling points of inbred resources were threefold. First, most inbred
strains have already been genotyped and need not be genotyped
again, whereas outbred animals are genetically unique and thus
need to be genotyped in each experiment. Recently, next-generation
sequencing (NGS) has been used to genotype commercially
available outbred mice, using two different approaches (Davies
et al., 2016; Parker et al., 2016), showing that NGS is an attractive
alternative to microarrays for genotyping outbred populations.
Second, multiple measurements can be made on the same

genotypes (using multiple animals of the same inbred strain),

thus reducing non-genetic variation and facilitating detection of
genetic associations. However, when inbred panels are large
enough (e.g. BXD RI panel), using all strains and only one
animal per strain might be more powerful than using fewer
strains and multiple animals per strain (Fig. 1B in Andreux et al.,
2012). Using one animal per strain effectively means using an
outbred sample.

The third advantage is that the same genotypes can be used in
multiple experiments. This permits accumulation of phenotypic
data over the years, which facilitates systems genetics approaches.
The best example of this is the accumulation of more than 5000
organismal phenotypes, mRNA expression in ∼33 tissues,
microRNA and protein expression data, as well as metabolomics
data in the BXD RI panel (www.genenetwork.org). The availability
of multiple animals with the same genotypes has also facilitated
studies of gene by environment (G×E) interactions and sex-specific
genetic effects (G×S) (Peirce et al., 1998). Last but not least, this
panel has been used to evaluate the robustness of positive findings
through replication studies.

However, it is possible to tackle these goals using outbred
populations, as illustrated by the following studies. Krohn et al.
(2014) identified G×S effects in outbred HS mice, showing that
such effects were widespread but relatively small. French et al.
(2015) replicated benzene-induced genotoxicity in one study of two
cohorts of DO mice, illustrating the concept of replication for
different sets of genotypes. They did not go as far as mapping QTLs
in the two cohorts however, but instead combined them for QTL
mapping (presumably because of sample size considerations). In
theory, genotype to phenotype associations involving variants in
Hardy–Weinberg equilibrium (see Glossary, Box 1) could be
investigated in multiple samples collected in different generations of
an outbred population, as allelic frequencies are expected to remain
constant. However, there is a caveat in that other variants that are not
in Hardy–Weinberg equilibrium might cause differences in genetic
background and interact with the evaluated variant, modifying its
effect. Thus, the potential of outbred populations for replication
studies and to investigate G×S and G×E interactions remains to be
fully exploited.

Conclusions
Multiple highly recombinant rat and mouse resources now allow
precise mapping of phenotypic variation. However, experimental
validation and functional characterisation of candidate genes
remain major obstacles in the way of identifying causal genes and
pathways. Both steps are crucial to turn QTLs into biological
understanding of the mechanisms underlying behaviour. The
advent of the CRISPR/Cas technology holds great promises in this
regard, yet important experimental parameters such as the genetic
background on which mutants are generated need to be considered
carefully.

It is important to stress that many of the resources highlighted
here are not fixed – they are evolving, be it by addition of new RI
strains (e.g. BXD panel), further inbreeding of current lines (e.g.
CC) or further outbreeding of current population (e.g. DO, HS).
Furthermore, new resources can easily be created from existing ones
(e.g. RIX), and resources can be combined (Bennett et al., 2010;
Furlotte et al., 2012). Thus, rodent resources can only improve in the
future.

This article is part of a special subject collection ‘Spotlight on Rat: Translational
Impact’, guest edited by Tim Aitman and Aron Geurts. See related articles in this
collection at http://dmm.biologists.org/collection/rat-disease-model.
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Supplementary Table S1. Tractable QTLs for neurobehavioral traits mapped in 
rodent resources. 
 

 

Click here to Download Table S1 

 

Disease Models & Mechanisms 10: doi:10.1242/dmm.027789: Supplementary information

D
is

ea
se

 M
o

de
ls

 &
 M

ec
ha

ni
sm

s 
• 

S
up

pl
em

en
ta

ry
 in

fo
rm

at
io

n

http://www.biologists.com/DMM_Movies/DMM027789/TableS1.xlsx

