Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About DMM
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contact
    • Contact DMM
    • Advertising
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in

Search

  • Advanced search
Disease Models & Mechanisms
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Disease Models & Mechanisms

Advanced search

RSS   Twitter   Facebook   YouTube

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About DMM
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contact
    • Contact DMM
    • Advertising
    • Feedback
Research Article
Partial genetic suppression of a loss-of-function mutant of the neuronal ceroid lipofuscinosis-associated protease TPP1 in Dictyostelium discoideum
Jonathan E. Phillips, Richard H. Gomer
Disease Models & Mechanisms 2015 8: 147-156; doi: 10.1242/dmm.018820
Jonathan E. Phillips
Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Richard H. Gomer
Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: rgomer@tamu.edu
  • Article
  • Figures & tables
  • Supp info
  • Info & metrics
  • PDF + SI
  • PDF
Loading

Abstract

Neuronal ceroid lipofuscinosis (NCL) is the most common childhood-onset neurodegenerative disease. NCL is inevitably fatal, and there is currently no treatment available. Children with NCL show a progressive decline in movement, vision and mental abilities, and an accumulation of autofluorescent deposits in neurons and other cell types. Late-infantile NCL is caused by mutations in the lysosomal protease tripeptidyl peptidase 1 (TPP1). TPP1 cleaves tripeptides from the N-terminus of proteins in vitro, but little is known about the physiological function of TPP1. TPP1 shows wide conservation in vertebrates but it is not found in Drosophila, Caenorhabditis elegans or Saccharomyces cerevisiae. Here, we characterize ddTpp1, a TPP1 ortholog present in the social amoeba Dictyostelium discoideum. Lysates from cells lacking ddTpp1 show a reduced but not abolished ability to cleave a TPP1 substrate, suggesting that other Dictyostelium enzymes can perform this cleavage. ddTpp1 and human TPP1 localize to the lysosome in Dictyostelium, indicating conserved function and trafficking. Cells that lack ddTpp1 show precocious multicellular development and a reduced ability to form spores during development. When cultured in autophagy-stimulating conditions, cells lacking ddTpp1 rapidly decrease in size and are less viable than wild-type cells, suggesting that one function of ddTpp1 could be to limit autophagy. Cells that lack ddTpp1 exhibit strongly impaired development in the presence of the lysosome-perturbing drug chloroquine, and this phenotype can be suppressed through a secondary mutation in the gene that we name suppressor of tpp1− A (stpA), which encodes a protein with some similarity to mammalian oxysterol-binding proteins (OSBPs). Taken together, these results suggest that targeting specific proteins could be a viable way to suppress the effects of loss of TPP1 function.

Footnotes

  • Competing interests

    The authors declare no competing or financial interests.

  • Author contributions

    J.E.P. and R.H.G. conceived of the study and designed the experiments. J.E.P. performed the experiments. J.E.P. and R.H.G. prepared and edited the manuscript.

  • Funding

    This work was supported by National Institutes of Health [GM074990 and GM102280 to R.H.G.].

  • Supplementary material

    Supplementary material available online at http://dmm.biologists.org/lookup/suppl/doi:10.1242/dmm.018820/-/DC1

  • Received October 20, 2014.
  • Accepted December 21, 2014.
  • © 2015. Published by The Company of Biologists Ltd

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

View Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

RSSRSS

Keywords

  • Neuronal ceroid lipofuscinosis
  • Batten disease
  • TPP1
  • Tripeptidyl peptidase 1
  • Dictyostelium

 Download PDF

Email

Thank you for your interest in spreading the word on Disease Models & Mechanisms.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Partial genetic suppression of a loss-of-function mutant of the neuronal ceroid lipofuscinosis-associated protease TPP1 in Dictyostelium discoideum
(Your Name) has sent you a message from Disease Models & Mechanisms
(Your Name) thought you would like to see the Disease Models & Mechanisms web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Research Article
Partial genetic suppression of a loss-of-function mutant of the neuronal ceroid lipofuscinosis-associated protease TPP1 in Dictyostelium discoideum
Jonathan E. Phillips, Richard H. Gomer
Disease Models & Mechanisms 2015 8: 147-156; doi: 10.1242/dmm.018820
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Research Article
Partial genetic suppression of a loss-of-function mutant of the neuronal ceroid lipofuscinosis-associated protease TPP1 in Dictyostelium discoideum
Jonathan E. Phillips, Richard H. Gomer
Disease Models & Mechanisms 2015 8: 147-156; doi: 10.1242/dmm.018820

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
    • Abstract
    • INTRODUCTION
    • RESULTS
    • DISCUSSION
    • MATERIALS AND METHODS
    • Acknowledgements
    • Footnotes
    • References
  • Figures & tables
  • Supp info
  • Info & metrics
  • PDF + SI
  • PDF

Related articles

Cited by...

More in this TOC section

  • Interpreting the pathogenicity of Joubert syndrome missense variants in Caenorhabditis elegans
  • Mistargeting of secretory cargo in retromer-deficient cells
  • Sensory neuron cultures derived from adult db/db mice as a simplified model to study type-2 diabetes-associated axonal regeneration defects
Show more RESEARCH ARTICLE

Similar articles

Other journals from The Company of Biologists

Development

Journal of Cell Science

Journal of Experimental Biology

Biology Open

Advertisement

DMM and COVID-19

We are aware that the COVID-19 pandemic is having an unprecedented impact on researchers worldwide. The Editors of all The Company of Biologists’ journals have been considering ways in which we can alleviate concerns that members of our community may have around publishing activities during this time. Read about the actions we are taking at this time.

Please don’t hesitate to contact the Editorial Office if you have any questions or concerns.


Professor Elizabeth Patton appointed as DMM’s next Editor-in-Chief

We are pleased to announce that The Company of Biologists directors have appointed Professor Elizabeth Patton as DMM's new Editor-in-Chief. As Paresh Vyas writes in his Editorial, Liz ‘brings vitality and a passion for the remit of DMM, and is deeply embedded in the community.’


Did you know DMM Conference Travel Grants can be used for online meetings?

With travel restrictions still in place, we want to continue supporting early-career researchers in their careers. DMM’s Conference Travel Grants can now be used to attend virtual and online scientific meetings, workshops, conferences and training courses.

The current application round closes on 8 February 2021 – find out more.


Identification of MYOM2 as a candidate gene in hypertrophic cardiomyopathy and Tetralogy of Fallot, and its functional evaluation in the Drosophila heart

Research from Silke Sperling and colleagues uses Drosophila to identify MYOM2 as a candidate gene in congenital heart malformations in this issue’s Editor’s choice.


C. elegans as a disease model

A new Research article from Doyle et al., models spinal muscular atrophy in C. elegans to show that that targeting therapies to muscle cells is more effective than neuronal delivery. Find more research using C. elegans as a disease model in our latest subject collection.


Call for papers – The RAS Pathway: Diseases, Therapeutics and Beyond

Our upcoming special issue is now welcoming submissions until 1 April 2021. Guest-edited by Donita Brady (Perelman School of Medicine at the University of Pennsylvania, USA) and Arvin Dar (Icahn School of Medicine at Mount Sinai, USA), the issue will focus on the targeting the RAS pathway. Find out more about the issue and how to submit your manuscript.


Interview – Kim Landry-Truchon and Nicolas Houde

In an interview, first authors Kim Landry-Truchon and Nicolas Houde discuss their mouse model of the early stages of pleuropulmonary blastoma, reflecting on the implications of their work and the future of their field.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About DMM
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact DMM
  • Advertising
  • Feedback

Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992