Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About DMM
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contact
    • Contact DMM
    • Advertising
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in

Search

  • Advanced search
Disease Models & Mechanisms
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Disease Models & Mechanisms

Advanced search

RSS   Twitter   Facebook   YouTube

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About DMM
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contact
    • Contact DMM
    • Advertising
    • Feedback
Research Article
Long-lasting alterations to DNA methylation and ncRNAs could underlie the effects of fetal alcohol exposure in mice
Benjamin I. Laufer, Katarzyna Mantha, Morgan L. Kleiber, Eric J. Diehl, Sean M. F. Addison, Shiva M. Singh
Disease Models & Mechanisms 2013 6: 977-992; doi: 10.1242/dmm.010975
Benjamin I. Laufer
Molecular Genetics Unit, Department of Biology, Western University, London, Ontario, N6A 5B7, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Katarzyna Mantha
Molecular Genetics Unit, Department of Biology, Western University, London, Ontario, N6A 5B7, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Morgan L. Kleiber
Molecular Genetics Unit, Department of Biology, Western University, London, Ontario, N6A 5B7, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Eric J. Diehl
Molecular Genetics Unit, Department of Biology, Western University, London, Ontario, N6A 5B7, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sean M. F. Addison
Molecular Genetics Unit, Department of Biology, Western University, London, Ontario, N6A 5B7, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Shiva M. Singh
Molecular Genetics Unit, Department of Biology, Western University, London, Ontario, N6A 5B7, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: ssingh@uwo.ca
  • Article
  • Figures & tables
  • Supp info
  • Info & metrics
  • PDF + SI
  • PDF
Loading

SUMMARY

Fetal alcohol spectrum disorders (FASDs) are characterized by life-long changes in gene expression, neurodevelopment and behavior. What mechanisms initiate and maintain these changes are not known, but current research suggests a role for alcohol-induced epigenetic changes. In this study we assessed alterations to adult mouse brain tissue by assaying DNA cytosine methylation and small noncoding RNA (ncRNA) expression, specifically the microRNA (miRNA) and small nucleolar RNA (snoRNA) subtypes. We found long-lasting alterations in DNA methylation as a result of fetal alcohol exposure, specifically in the imprinted regions of the genome harboring ncRNAs and sequences interacting with regulatory proteins. A large number of major nodes from the identified networks, such as Pten signaling, contained transcriptional repressor CTCF-binding sites in their promoters, illustrating the functional consequences of alcohol-induced changes to DNA methylation. Next, we assessed ncRNA expression using two independent array platforms and quantitative PCR. The results identified 34 genes that are targeted by the deregulated miRNAs. Of these, four (Pten, Nmnat1, Slitrk2 and Otx2) were viewed as being crucial in the context of FASDs given their roles in the brain. Furthermore, ∼20% of the altered ncRNAs mapped to three imprinted regions (Snrpn-Ube3a, Dlk1-Dio3 and Sfmbt2) that showed differential methylation and have been previously implicated in neurodevelopmental disorders. The findings of this study help to expand on the mechanisms behind the long-lasting changes in the brain transcriptome of FASD individuals. The observed changes could contribute to the initiation and maintenance of the long-lasting effect of alcohol.

Footnotes

  • COMPETING INTERESTS

    The authors declare that they do not have any competing or financial interests.

  • AUTHOR CONTRIBUTIONS

    This project was developed by B.I.L., M.L.K., K.M., E.J.D. and S.M.S. B.I.L., K.M., M.L.K. and E.J.D. raised the mice, performed the experimental interventions and extracted the RNA. B.I.L. performed the bioinformatic analysis. S.M.F.A., B.I.L. and E.J.D. designed and performed the qPCR experiments. B.I.L., M.L.K. and S.M.S. wrote the manuscript.

  • FUNDING

    This work was supported by an Ontario Graduate Scholarship (OGS) and Natural Sciences and Engineering Research Council of Canada (NSERC) scholarship to B.I.L., a Queen Elizabeth II Scholarship in Science and Technology (QEIISST) to M.L.K., a scholarship from NSERC to E.J.D., and grants from NSERC, the Canadian Institute of Health Research (CIHR) and the Ontario Mental Health Foundation (OMHF) to S.M.S. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

  • SUPPLEMENTARY MATERIAL

    Supplementary material for this article is available at http://dmm.biologists.org/lookup/suppl/doi:10.1242/dmm.010975/-/DC1

  • Received September 28, 2012.
  • Accepted April 5, 2013.
  • © 2013. Published by The Company of Biologists Ltd

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

View Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

RSSRSS

 Download PDF

Email

Thank you for your interest in spreading the word on Disease Models & Mechanisms.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Long-lasting alterations to DNA methylation and ncRNAs could underlie the effects of fetal alcohol exposure in mice
(Your Name) has sent you a message from Disease Models & Mechanisms
(Your Name) thought you would like to see the Disease Models & Mechanisms web site.
Share
Research Article
Long-lasting alterations to DNA methylation and ncRNAs could underlie the effects of fetal alcohol exposure in mice
Benjamin I. Laufer, Katarzyna Mantha, Morgan L. Kleiber, Eric J. Diehl, Sean M. F. Addison, Shiva M. Singh
Disease Models & Mechanisms 2013 6: 977-992; doi: 10.1242/dmm.010975
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Research Article
Long-lasting alterations to DNA methylation and ncRNAs could underlie the effects of fetal alcohol exposure in mice
Benjamin I. Laufer, Katarzyna Mantha, Morgan L. Kleiber, Eric J. Diehl, Sean M. F. Addison, Shiva M. Singh
Disease Models & Mechanisms 2013 6: 977-992; doi: 10.1242/dmm.010975

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
    • SUMMARY
    • INTRODUCTION
    • RESULTS
    • DISCUSSION
    • MATERIALS AND METHODS
    • Acknowledgements
    • Footnotes
    • REFERENCES
  • Figures & tables
  • Supp info
  • Info & metrics
  • PDF + SI
  • PDF

Related articles

Cited by...

More in this TOC section

  • A luminal EF-hand mutation in STIM1 in mice causes the clinical hallmarks of tubular aggregate myopathy
  • Quantitative whole-brain 3D imaging of tyrosine hydroxylase-labeled neuron architecture in the mouse MPTP model of Parkinson's disease
  • Adenoviral TMBIM6 vector attenuates ER-stress-induced apoptosis in a neonatal hypoxic-ischemic rat model
Show more RESEARCH ARTICLE

Similar articles

Other journals from The Company of Biologists

Development

Journal of Cell Science

Journal of Experimental Biology

Biology Open

Advertisement

Editor’s choice – Perturbed development of cranial neural crest cells in association with reduced sonic hedgehog signaling underlies the pathogenesis of retinoic-acid-induced cleft palate

Schematic showing that excessive RA signaling reduces Shh signaling, which results in elevated cell death of CNCCs and cleft palate.

Takashi Yamashiro and colleagues identify the critical role of the retinoic acid-Sonic hedgehog signalling pathway in cranial neural crest and palate development.


Featured article – Deep learning enables automated volumetric assessments of cardiac function in zebrafish

A graphical 3D reconstruction of ventricular EDV and ESV as measured by CFIN.

A new Resource article by Nguyen et al. describes CFIN, a novel deep learning image analysis platform to assess cardiac function in embryonic zebrafish. 


Review – CRISPR/Cas9-mediated genome editing in nonhuman primates

Two pictures of non-human primates commonly used in genome editing research.

Yuyu Niu and colleagues summarise the history of genome editing in non-human primates and discusses the challenges and prospects of the technology.


First person interviews

Pictures of Alexander and Jocelyn.

Have you seen our interviews with the early-career first authors of our papers? Recently, we caught up with Alexander Akerberg and Jocelyn Wessels. 


Travelling Fellowship – New imaging approach unveils a bigger picture

Highlights from Travelling Fellowships trips.

Find out how Pamela Imperadore’s Travelling Fellowship grant from The Company of Biologists took her to Germany, where she used new imaging techniques to investigate the cellular machinery underlying octopus arm regeneration. Don’t miss the next application deadline for 2020 travel, coming up on 29 November. Where will you go?


preLights – HSP110 dependent HSP70 disaggregation machinery mediates prion-like propagation of amyloidogenic proteins in metazoa

preLights logo

Highlighted by Tessa Sinnige, a recent preprint from Carmen Nussbaum-Krammer and co-workers shows that Hsp110 activity protects against amorphous protein aggregation but promotes amyloid aggregation and toxicity in C. elegans models.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About DMM
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact DMM
  • Advertising
  • Feedback

Twitter   YouTube   LinkedIn

© 2019   The Company of Biologists Ltd   Registered Charity 277992