Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About DMM
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contact
    • Contact DMM
    • Advertising
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in

Search

  • Advanced search
Disease Models & Mechanisms
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Disease Models & Mechanisms

Advanced search

RSS   Twitter   Facebook   YouTube

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About DMM
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contact
    • Contact DMM
    • Advertising
    • Feedback
Research Article
Long-lasting alterations to DNA methylation and ncRNAs could underlie the effects of fetal alcohol exposure in mice
Benjamin I. Laufer, Katarzyna Mantha, Morgan L. Kleiber, Eric J. Diehl, Sean M. F. Addison, Shiva M. Singh
Disease Models & Mechanisms 2013 6: 977-992; doi: 10.1242/dmm.010975
Benjamin I. Laufer
1Molecular Genetics Unit, Department of Biology, Western University, London, Ontario, N6A 5B7, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Katarzyna Mantha
1Molecular Genetics Unit, Department of Biology, Western University, London, Ontario, N6A 5B7, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Morgan L. Kleiber
1Molecular Genetics Unit, Department of Biology, Western University, London, Ontario, N6A 5B7, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Eric J. Diehl
1Molecular Genetics Unit, Department of Biology, Western University, London, Ontario, N6A 5B7, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sean M. F. Addison
1Molecular Genetics Unit, Department of Biology, Western University, London, Ontario, N6A 5B7, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Shiva M. Singh
1Molecular Genetics Unit, Department of Biology, Western University, London, Ontario, N6A 5B7, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: ssingh@uwo.ca
  • Article
  • Figures & tables
  • Supp info
  • Info & metrics
  • PDF + SI
  • PDF
Loading

SUMMARY

Fetal alcohol spectrum disorders (FASDs) are characterized by life-long changes in gene expression, neurodevelopment and behavior. What mechanisms initiate and maintain these changes are not known, but current research suggests a role for alcohol-induced epigenetic changes. In this study we assessed alterations to adult mouse brain tissue by assaying DNA cytosine methylation and small noncoding RNA (ncRNA) expression, specifically the microRNA (miRNA) and small nucleolar RNA (snoRNA) subtypes. We found long-lasting alterations in DNA methylation as a result of fetal alcohol exposure, specifically in the imprinted regions of the genome harboring ncRNAs and sequences interacting with regulatory proteins. A large number of major nodes from the identified networks, such as Pten signaling, contained transcriptional repressor CTCF-binding sites in their promoters, illustrating the functional consequences of alcohol-induced changes to DNA methylation. Next, we assessed ncRNA expression using two independent array platforms and quantitative PCR. The results identified 34 genes that are targeted by the deregulated miRNAs. Of these, four (Pten, Nmnat1, Slitrk2 and Otx2) were viewed as being crucial in the context of FASDs given their roles in the brain. Furthermore, ∼20% of the altered ncRNAs mapped to three imprinted regions (Snrpn-Ube3a, Dlk1-Dio3 and Sfmbt2) that showed differential methylation and have been previously implicated in neurodevelopmental disorders. The findings of this study help to expand on the mechanisms behind the long-lasting changes in the brain transcriptome of FASD individuals. The observed changes could contribute to the initiation and maintenance of the long-lasting effect of alcohol.

Footnotes

  • COMPETING INTERESTS

    The authors declare that they do not have any competing or financial interests.

  • AUTHOR CONTRIBUTIONS

    This project was developed by B.I.L., M.L.K., K.M., E.J.D. and S.M.S. B.I.L., K.M., M.L.K. and E.J.D. raised the mice, performed the experimental interventions and extracted the RNA. B.I.L. performed the bioinformatic analysis. S.M.F.A., B.I.L. and E.J.D. designed and performed the qPCR experiments. B.I.L., M.L.K. and S.M.S. wrote the manuscript.

  • FUNDING

    This work was supported by an Ontario Graduate Scholarship (OGS) and Natural Sciences and Engineering Research Council of Canada (NSERC) scholarship to B.I.L., a Queen Elizabeth II Scholarship in Science and Technology (QEIISST) to M.L.K., a scholarship from NSERC to E.J.D., and grants from NSERC, the Canadian Institute of Health Research (CIHR) and the Ontario Mental Health Foundation (OMHF) to S.M.S. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

  • SUPPLEMENTARY MATERIAL

    Supplementary material for this article is available at http://dmm.biologists.org/lookup/suppl/doi:10.1242/dmm.010975/-/DC1

  • Received September 28, 2012.
  • Accepted April 5, 2013.
  • © 2013. Published by The Company of Biologists Ltd

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

View Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

RSSRSS

 Download PDF

Email

Thank you for your interest in spreading the word on Disease Models & Mechanisms.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Long-lasting alterations to DNA methylation and ncRNAs could underlie the effects of fetal alcohol exposure in mice
(Your Name) has sent you a message from Disease Models & Mechanisms
(Your Name) thought you would like to see the Disease Models & Mechanisms web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Research Article
Long-lasting alterations to DNA methylation and ncRNAs could underlie the effects of fetal alcohol exposure in mice
Benjamin I. Laufer, Katarzyna Mantha, Morgan L. Kleiber, Eric J. Diehl, Sean M. F. Addison, Shiva M. Singh
Disease Models & Mechanisms 2013 6: 977-992; doi: 10.1242/dmm.010975
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Research Article
Long-lasting alterations to DNA methylation and ncRNAs could underlie the effects of fetal alcohol exposure in mice
Benjamin I. Laufer, Katarzyna Mantha, Morgan L. Kleiber, Eric J. Diehl, Sean M. F. Addison, Shiva M. Singh
Disease Models & Mechanisms 2013 6: 977-992; doi: 10.1242/dmm.010975

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
    • SUMMARY
    • INTRODUCTION
    • RESULTS
    • DISCUSSION
    • MATERIALS AND METHODS
    • Acknowledgements
    • Footnotes
    • REFERENCES
  • Figures & tables
  • Supp info
  • Info & metrics
  • PDF + SI
  • PDF

Related articles

Cited by...

More in this TOC section

  • Mistargeting of secretory cargo in retromer-deficient cells
  • Sensory neuron cultures derived from adult db/db mice as a simplified model to study type-2 diabetes-associated axonal regeneration defects
  • Head-to-head study of oxelumab and adalimumab in a mouse model of ulcerative colitis based on NOD/Scid IL2Rγnull mice reconstituted with human peripheral blood mononuclear cells
Show more RESEARCH ARTICLE

Similar articles

Other journals from The Company of Biologists

Development

Journal of Cell Science

Journal of Experimental Biology

Biology Open

Advertisement

DMM and COVID-19

We are aware that the COVID-19 pandemic is having an unprecedented impact on researchers worldwide. The Editors of all The Company of Biologists’ journals have been considering ways in which we can alleviate concerns that members of our community may have around publishing activities during this time. Read about the actions we are taking at this time.

Please don’t hesitate to contact the Editorial Office if you have any questions or concerns.


Professor Elizabeth Patton appointed as DMM’s next Editor-in-Chief

We are pleased to announce that The Company of Biologists directors have appointed Professor Elizabeth Patton as DMM's new Editor-in-Chief. As Paresh Vyas writes in his Editorial, Liz ‘brings vitality and a passion for the remit of DMM, and is deeply embedded in the community.’


Did you know DMM Conference Travel Grants can be used for online meetings?

With travel restrictions still in place, we want to continue supporting early-career researchers in their careers. DMM’s Conference Travel Grants can now be used to attend virtual and online scientific meetings, workshops, conferences and training courses.

The current application round closes on 8 February 2021 – find out more.


Identification of MYOM2 as a candidate gene in hypertrophic cardiomyopathy and Tetralogy of Fallot, and its functional evaluation in the Drosophila heart

Research from Silke Sperling and colleagues uses Drosophila to identify MYOM2 as a candidate gene in congenital heart malformations in this issue’s Editor’s choice.


C. elegans as a disease model

A new Research article from Doyle et al., models spinal muscular atrophy in C. elegans to show that that targeting therapies to muscle cells is more effective than neuronal delivery. Find more research using C. elegans as a disease model in our latest subject collection.


Call for papers – The RAS Pathway: Diseases, Therapeutics and Beyond

Our upcoming special issue is now welcoming submissions until 1 April 2021. Guest-edited by Donita Brady (Perelman School of Medicine at the University of Pennsylvania, USA) and Arvin Dar (Icahn School of Medicine at Mount Sinai, USA), the issue will focus on the targeting the RAS pathway. Find out more about the issue and how to submit your manuscript.


Interview – Kim Landry-Truchon and Nicolas Houde

In an interview, first authors Kim Landry-Truchon and Nicolas Houde discuss their mouse model of the early stages of pleuropulmonary blastoma, reflecting on the implications of their work and the future of their field.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About DMM
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact DMM
  • Advertising
  • Feedback

Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992