Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About DMM
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contact
    • Contact DMM
    • Advertising
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in

Search

  • Advanced search
Disease Models & Mechanisms
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Disease Models & Mechanisms

Advanced search

RSS   Twitter   Facebook   YouTube

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About DMM
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contact
    • Contact DMM
    • Advertising
    • Feedback
Review
Highly impulsive rats: modelling an endophenotype to determine the neurobiological, genetic and environmental mechanisms of addiction
Bianca Jupp, Daniele Caprioli, Jeffrey W. Dalley
Disease Models & Mechanisms 2013 6: 302-311; doi: 10.1242/dmm.010934
Bianca Jupp
1Behavioural and Cognitive Neurosciences Institute and The Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
2Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Daniele Caprioli
1Behavioural and Cognitive Neurosciences Institute and The Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jeffrey W. Dalley
1Behavioural and Cognitive Neurosciences Institute and The Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
3Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 2QQ, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: jwd20@cam.ac.uk
  • Article
  • Figures & tables
  • Info & metrics
  • PDF
Loading

Article Figures & Tables

Figures

  • Fig. 1.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Fig. 1.

    Schematic representation of operant-based tests of impulsivity in rodents. Green arrows represent correct responses and outcomes, whereas red arrows denote incorrect responses and associated outcomes. Blue arrows denote outcomes associated following an omitted response. Adapted with permission from Dalley and Roiser (Dalley and Roiser, 2012). (A) The five-choice serial reaction time task (5CSRTT) requires animals to wait for a food-predictive light cue before carrying out the response. The trial is initiated when the animal enters the illuminated food magazine (panel 1) and, following a delay (5 seconds), one of five cue lights is briefly illuminated (panel 3). If subjects nose-poke in the corresponding aperture, they receive a food reward (green arrow, panel 3). Responses that are made prior to the presentation of the cue light (impulsive responses; panel 2), are incorrect (red arrow, panel 3) or are withheld (panel 4) are punished by a 5-second time out during which the house light is extinguished. (B) The stop-signal reaction time task requires subjects to withhold reinforced responding following presentation of a tone cue (stop signal). The task begins following entry into the food magazine (panel 1), after which the left lever is introduced into the arena (panel 2). Responding on this lever introduces the right ‘reward’ lever, which, if depressed during a go trial (no tone), results in delivery of a food reward (panel 3). During a stop trial (during which a tone is presented), responding on the right lever is punished by a time out. If no responses are made during a stop trial, a food reward is delivered (panel 4). Conversely, if no response is made during a go trial, this is punished by a time-out period. Impulsive individuals have difficulty inhibiting responses during stop trials. (C) The delay-discounting task requires subjects to choose between a small immediate food reward or a larger reward delivered following a delay. The tasks begins following entry into the food magazine (panel 1), after which animals are presented with two levers (panel 2): one provides a small immediate food reward (left lever) and the other a larger reward following a delay (right lever). Omitted responses (panel 3) are unrewarded. Impulsive individuals prefer the immediate over the delayed reward.

  • Table 1.
    • Download figure
    • Open in new tab
    • Download powerpoint
    • Download figure
    • Open in new tab
    • Download powerpoint
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

RSSRSS

 Download PDF

Email

Thank you for your interest in spreading the word on Disease Models & Mechanisms.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Highly impulsive rats: modelling an endophenotype to determine the neurobiological, genetic and environmental mechanisms of addiction
(Your Name) has sent you a message from Disease Models & Mechanisms
(Your Name) thought you would like to see the Disease Models & Mechanisms web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Review
Highly impulsive rats: modelling an endophenotype to determine the neurobiological, genetic and environmental mechanisms of addiction
Bianca Jupp, Daniele Caprioli, Jeffrey W. Dalley
Disease Models & Mechanisms 2013 6: 302-311; doi: 10.1242/dmm.010934
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Review
Highly impulsive rats: modelling an endophenotype to determine the neurobiological, genetic and environmental mechanisms of addiction
Bianca Jupp, Daniele Caprioli, Jeffrey W. Dalley
Disease Models & Mechanisms 2013 6: 302-311; doi: 10.1242/dmm.010934

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
    • Abstract
    • Defining impulsivity: a human trait
    • Neurobiology of impulsivity
    • Animal models of trait-like impulsivity
    • Trait-like impulsivity in rodents: a vulnerability marker of addiction
    • Implications for addiction
    • Conclusions
    • Acknowledgements
    • Footnotes
    • References
  • Figures & tables
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Hyperoxia-induced bronchopulmonary dysplasia: better models for better therapies
  • Modelling epilepsy in the mouse: challenges and solutions
  • AIRE deficiency, from preclinical models to human APECED disease
Show more REVIEW

Similar articles

Subject collections

  • Rat as a Disease Model

Other journals from The Company of Biologists

Development

Journal of Cell Science

Journal of Experimental Biology

Biology Open

Advertisement

DMM and COVID-19

We are aware that the COVID-19 pandemic is having an unprecedented impact on researchers worldwide. The Editors of all The Company of Biologists’ journals have been considering ways in which we can alleviate concerns that members of our community may have around publishing activities during this time. Read about the actions we are taking at this time.

Please don’t hesitate to contact the Editorial Office if you have any questions or concerns.


Monica Justice bids farewell to DMM

In her farewell Editorial, outgoing Editor-in-Chief Monica Justice reminds us of the past half-decade of growth and of DMM's commitment to support the disease modelling community, concluding, “The knowledge and experience I gained during my time as Senior Editor and EiC at DMM is invaluable: working within a not-for-profit community publishing environment is a joy.”


3D imaging of beta cell mass in diabetic mouse models

In their inducible mouse model of diabetes, Roostalu et al. demonstrate how quantitative light-sheet imaging can capture changes in individual islets to help pharmacological research in diabetes.

Visit our YouTube channel to watch more videos from DMM, our sister journals and the Company.


Modelling Joubert syndrome patient-derived mutations in C. elegans

In this issue’s Editor’s choice, Karen Lange and colleagues used C. elegans to model and characterise two patient-derived mutations that cause the ciliopathy Joubert syndrome.


Interview – Karen Lange

First author of our current Editor’s choice, Karen Lange takes us behind the scenes of the paper, and shares her thoughts on how the lack of both time and job security will impact her research.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About DMM
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact DMM
  • Advertising
  • Feedback

Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992