Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About DMM
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contact
    • Contact DMM
    • Advertising
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in

Search

  • Advanced search
Disease Models & Mechanisms
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Disease Models & Mechanisms

Advanced search

RSS   Twitter   Facebook   YouTube

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About DMM
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contact
    • Contact DMM
    • Advertising
    • Feedback
REVIEW
Modelling epilepsy in the mouse: challenges and solutions
Grant F. Marshall, Alfredo Gonzalez-Sulser, Catherine M. Abbott
Disease Models & Mechanisms 2021 14: dmm047449 doi: 10.1242/dmm.047449 Published 1 March 2021
Grant F. Marshall
1Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
2Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alfredo Gonzalez-Sulser
2Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK
3Centre for Discovery Brain Sciences, 1 George Square, University of Edinburgh, Edinburgh EH8 9XD, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Catherine M. Abbott
1Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
2Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Catherine M. Abbott
  • For correspondence: C.Abbott@ed.ac.uk
  • Article
  • Figures & tables
  • Info & metrics
  • PDF
Loading

ABSTRACT

In most mouse models of disease, the outward manifestation of a disorder can be measured easily, can be assessed with a trivial test such as hind limb clasping, or can even be observed simply by comparing the gross morphological characteristics of mutant and wild-type littermates. But what if we are trying to model a disorder with a phenotype that appears only sporadically and briefly, like epileptic seizures? The purpose of this Review is to highlight the challenges of modelling epilepsy, in which the most obvious manifestation of the disorder, seizures, occurs only intermittently, possibly very rarely and often at times when the mice are not under direct observation. Over time, researchers have developed a number of ways in which to overcome these challenges, each with their own advantages and disadvantages. In this Review, we describe the genetics of epilepsy and the ways in which genetically altered mouse models have been used. We also discuss the use of induced models in which seizures are brought about by artificial stimulation to the brain of wild-type animals, and conclude with the ways these different approaches could be used to develop a wider range of anti-seizure medications that could benefit larger patient populations.

Introduction: what is epilepsy?

Epilepsy is one of the most common neurological conditions worldwide, with an incidence of just under one in every hundred people in the UK, and a peak in occurrence in very young and very old people (Beghi and Giussani, 2018). It is a condition that results from disruptions in network activity in the brain that manifests as seizures. Although anti-seizure drugs [ASDs; also known as anti-epileptic drugs (AEDs); see Glossary, Box 1] can be used to treat patients, these have very variable efficacies and are palliative, as there is no cure for epilepsy.

Box 1. Glossary

Anti-seizure drug (ASD): medication to treat seizures in people with epilepsy; these drugs are also known as anti-epileptic drugs (AEDs).

Electrographic seizures: seizures that are only identifiable by monitoring with electroencephalography (EEG), with no outwardly observable signs.

Epileptic encephalopathies: disorders in which epileptic activity in the maturing brain contributes to severe progressive cognitive and behavioural impairments beyond that predicted from the underlying pathology.

Epileptiform: specific discharges in the brain, usually detected via EEG.

Interictal: the periods between seizures in a patient or animal model.

Lennox–Gastaut syndrome: a complex, rare and severe childhood-onset epilepsy characterised by multiple and concurrent seizure types and cognitive dysfunction.

Kindling: repeated induction of seizure activity leading to progressively more severe seizures in terms of behaviour and duration.

Overt, convulsive or behavioural seizures: visually obvious seizures that can be accurately and reliably detected without the need for EEG. Examples include tonic-clonic seizures, convulsions and wild running.

Maximal electroshock seizure test: a highly effective test for detecting novel ASDs in which an electrical pulse is given either through mouth or scalp electrodes to induce generalised tonic-clonic seizures.

Myoclonic jerk: a brief and involuntary muscle spasm with irregular muscle twitching.

Racine stages: a widely used observational system for categorising seizure severity in animal models, originally proposed in the 1970s.

Sudden death in epilepsy (SUDEP): when an individual with epilepsy dies suddenly and unexpectedly with or without evidence of a seizure and where no other obvious cause of death can be found.

Temporal lobe epilepsy (TLE): is characterised by focal seizures that originate in the temporal lobe of the brain. One-third of patients with TLE have drug-resistant seizures.

There are many different types of seizures with different origins and frequencies. The three main categories of epilepsy, as defined by the International League Against Epilepsy (ILAE), are based on the origin of onset: seizures of generalised onset involve large bilateral brain areas, focal onset seizures arise in a specific region on one side of the brain, and the remaining category comprises seizures of unknown onset. Sudden death in epilepsy (SUDEP; Box 1), when an individual dies during or after a seizure and often while they are sleeping, occurs in one in 1000 people with epilepsy who are otherwise healthy each year.

The causes of epilepsy range from purely environmental, such as traumatic brain injury, through multifactorial causes like brain tumours, to purely genetic, like inherited single-gene disorders or de novo heterozygous dominant mutations (Fig. 1). Epilepsy frequently starts in later life and is usually associated with underlying cardiovascular or neurodegenerative disease or with physical insults such as head injury. The worldwide incidence in over 65s is 240 in every 100,000 (Liu et al., 2016). However, epilepsy is more common in childhood, with a particularly high incidence in children under 2 years old (Wirrell et al., 2011). Multiple monogenic epileptic encephalopathies (Box 1) have been identified (for a detailed review, see McTague et al., 2016). Importantly, in these cases, the epileptiform activity (Box 1) may, in itself, be harmful to development and contributes to additional cognitive and behavioural impairment.

Fig. 1.
  • Download figure
  • Open in new tab
  • Download powerpoint
Fig. 1.

The common causes of epilepsy, from purely genetic (blue) to purely environmental (yellow).

Over a hundred single-gene causes of epilepsy have now been identified, with no one gene underlying more than 1% of total cases (reviewed in Helbig and Ellis, 2020). Initially, many of these were inherited mutations in genes encoding ion channels. However, the advent of exome and later whole-genome sequencing fostered the discovery of many new epilepsy genes. Trio sequencing, which entails sequencing of the exomes of both parents and the affected child, has been a particularly successful approach for pinpointing mutations that have arisen de novo. Without sequencing, these cases would, of course, not have been diagnosed as genetic as they manifest sporadically rather than running in families. Many of the newly discovered epilepsy genes overlap with those found to be causative of autism, intellectual disability and other neurodevelopmental disorders. These genes encode not just ion channels, but proteins with roles ranging from synaptic vesicle recycling (Dhindsa et al., 2015) and protein synthesis (de Ligt et al., 2012; Lam et al., 2016) to basic metabolic functions like glucose transport (Seidner et al., 1998). The underlying mechanisms by which these newly identified mutations result in network disorders often remain to be identified, depending on the function of the gene and the ease with which mutations can be modelled. However, there are some notable exceptions for which different mutations in a single gene can lead to either a loss or gain of function, depending on whether the mutation is a nonsense or deletion, as opposed to a missense, mutation. This distinction can be very important for therapy, as discussed in more detail below.

How then, with this complex picture, can we best model epilepsy in animals? Although we limit the discussions in this Review to modelling epilepsy in mice, researchers also use other model systems with their own advantages and disadvantages (Box 2).

Box 2. Genetically manipulable model systems for epilepsy beyond the mouse

iPSCs

Human induced pluripotent stem cells (iPSCs) were first generated in 2007 from fibroblasts and can now be efficiently generated from patients with neurological disorders and healthy controls (Kogut et al., 2018; Takahashi et al., 2007). Patient-derived iPSC lines are useful for modelling disorders with complex genetic architecture, which would be impractical to model in whole animals. Otherwise, control iPSC lines can also be edited using tools such as CRISPR/Cas9 to recapitulate mutations seen in monogenic disorders (Eggenschwiler et al., 2016).

Diverse neuronal and non-neuronal cell types can be differentiated from iPSCs (Wiegand and Banerjee, 2019), enabling mechanistic studies and drug screening in human tissue. The effect of candidate drugs on spontaneous neural activity can be assessed at high throughput using multi-electrode array setups (Tidball and Parent, 2016). Aside from differences in the differentiation potential of iPSCs from different donors (Kyttälä et al., 2016), human iPSC-derived neurons are slow to fully differentiate (Nicholas et al., 2013) and slow to develop mature electrophysiology (Prè et al., 2014). Moreover, human neuronal cultures do not consistently develop synchronous network activity unless co-cultured with human or murine astrocytes (Kuijlaars et al., 2016), limiting their usefulness for modelling network disturbances in epilepsy.

However, recent advances in three-dimensional culture techniques and differentiation methods have allowed the generation of cerebral organoids from single iPSC lines. These organoids comprise diverse neuronal and glial cell types, which show limited self-organisation and exhibit spontaneous, synchronised neural activity (Izsak et al., 2019; Trujillo et al., 2019; Zafeiriou et al., 2020), meaning that they could eventually model both network-level and cell-autonomous defects in epilepsy.

Caenorhabditis elegans

The roundworm C. elegans has a relatively simple but exceptionally well-characterised nervous system consisting of exactly 302 neurons (in the adult hermaphrodite) with a highly stereotyped organisation (Chatterjee and Sinha, 2007). C. elegans neurons are morphologically similar to mammalian neurons and use conserved neurotransmitters, although there are important physiological differences – C. elegans neurons have ion channels but they do not have voltage-gated sodium channels (Bargmann, 1998; Risley et al., 2016). Nevertheless, it has been estimated that over 80% of protein-coding C. elegans genes have human homologues (Lai et al., 2000). Seizure-like activity in C. elegans typically includes convulsions or head bobbing. For example, worms with loss-of-function mutations in GABAA receptors are susceptible to pentylenetetrazol (PTZ)-induced head-bobbing convulsions (Williams et al., 2004; Wong et al., 2018). Head bobbing can also be induced in C. elegans by increasing their temperature above 26°C (Pandey et al., 2010).

C. elegans are cheap to maintain, reproduce rapidly, and can be treated with drugs via food (Kaletta and Hengartner, 2006). Combined with easily induced and assayed seizures, these features make them suitable for high-throughput drug screening (Wong et al., 2018). Electrophysiological recording is also possible in C. elegans (Goodman et al., 2012; Stawicki et al., 2013).

Drosophila

Around three-quarters of human disease genes have orthologues in Drosophila (Bier, 2005; Pandey and Nichols, 2011). Researchers using Drosophila as a disease model can exploit a wide variety of assays and sophisticated genetic tools to understand gene function and disease mechanisms (Ugur et al., 2016).

Drosophila have been used extensively as epilepsy models, with a number of seizure-susceptible mutants available (Parker et al., 2011a). For example, bang senseless is a gain-of-function mutation of the paralytic gene, which encodes a voltage-gated-sodium channel subunit. parabss1 is associated with a stereotyped sequence of spasms and paralysis in response to various mechanical stimuli (Parker et al., 2011b). Mutations in voltage-gated sodium channels also cause seizures and epilepsy in humans (Feng et al., 2019), and several of these mutations cause seizures in Drosophila when knocked into paralytic (Kroll et al., 2015b). Seizures in parabss1 flies can be partially suppressed with anti-seizure drugs (ASDs) or a ketogenic diet (Radlicz et al., 2019; Reynolds et al., 2004), suggesting shared underlying pathophysiology with patients. Furthermore, several Drosophila mutants have been identified that suppress seizures in parabss1 flies (Kroll et al., 2015b; Saras and Tanouye, 2016). The identification of seizure suppressor or enhancer mutations in Drosophila can reveal novel therapeutic avenues.

Drosophila have low maintenance costs and a rapid life cycle, and can be administered with drugs via food, making them suitable for high-throughput drug screening. Moreover, electrophysiological recording and stimulation are routinely performed at various stages of the life cycle (Kroll et al., 2015a; Parker et al., 2011b; Ugur et al., 2016).

Zebrafish

Over the past decade, zebrafish have surged in popularity as models of human neurological disorders (Fontana et al., 2018). It has been estimated that 76% of human disease genes have a zebrafish orthologue (Howe et al., 2013), and both larvae and adults are susceptible to seizures. Seizures can be elicited using convulsants such as PTZ or kainic acid, or by genetic manipulation, and typically involve hyperactive swimming followed by loss of posture (Afrikanova et al., 2013; Baraban et al., 2013). Electrographic seizures can be detected using EEG, which has been developed for use in both larval (Lee et al., 2020) and adult (Cho et al., 2017) forms. Seizure activity can also be directly visualised in the transparent larvae using transgenic reporters (Burrows et al., 2020).

Zebrafish have high fecundity and are relatively cheap to maintain (Avdesh et al., 2012). The larvae, arrayed in microtitre plates and video recorded, can be used for high-throughput ASD screening (Baraban et al., 2013; Griffin et al., 2016), with candidate drugs simply added to the water. For example, a zebrafish model of Dravet syndrome (with mutations in the SCN1A homologue scn1lab) shows face validity for behavioural and electrographic seizures. Drug screening using this model identified clemizole as a potential treatment for patients (Baraban et al., 2013).

Rats

As well as having similar gross brain anatomy, rats possess neural circuits and patterns of network activity that are highly homologous to those in humans (Heilbronner et al., 2016; Lu et al., 2012). Around three-quarters of human disease genes have rat orthologues, and genes associated with neurological disease are particularly well conserved (Huang et al., 2004). Before the development of programmable endonucleases, the transgenic tools available for rats were lagging behind the more sophisticated tools available for mice. However, transgenesis and site-specific editing are now equally feasible in rats (Ellenbroek and Youn, 2016; Guan et al., 2014; Gurumurthy and Lloyd, 2019).

Rats have been extensively studied and are highly informative as acute seizure models, and as kindling models, and have been instrumental for ASD screening (Löscher, 2017). At present, the best-characterised genetic rat epilepsy models are inbred strains carrying spontaneous mutations, such the GAERS and WAG/Rij strains (Danober et al., 1998). However, rats with clinically relevant mutations have also been studied (Ohmori et al., 2020). Diverse EEG setups have been developed for both tethered (Medlej et al., 2019) and wireless (McGuire et al., 2019) EEG in rats, and ex vivo brain slice preparations can be used to study seizure susceptibility (Accardi et al., 2018) and epileptogenesis (Dyhrfjeld-Johnsen et al., 2010), and to screen ASDs (Hill et al., 2010).

Modelling epilepsy

In order to rationally design and test novel treatments for epilepsy, researchers require whole-animal models that capture the relevant human pathology. Animal models must have construct validity, recapitulating the aetiology of the human disorder within a homologous neurobiological context; they must have face validity, exhibiting the same or similar phenotypes as patients; and they should ultimately have predictive validity, only responding to treatments that are effective in patients with the modelled disorder (Garner, 2014; Willner, 1984). Such models provide an indirect window into human pathology, allowing us to identify novel drug targets and to test the efficacy of therapies through preclinical trials.

Although there are fundamental differences between human and mouse neurobiology at all levels of organisation (Hodge et al., 2019), mice nevertheless represent strong candidate organisms for modelling human neurogenetic disorders. Over 99% of mouse genes have human homologues (Mouse Genome Sequencing Consortium et al., 2002), and, within the brain, the spatial pattern of gene expression is at least grossly conserved (Strand et al., 2007). In terms of epilepsy, focal mouse models of temporal lobe epilepsy (TLE; Box 1) mimic patients, in that ictal seizures emerge from the hippocampal formation and then spread to the rest of the brain (Riban et al., 2002). Similarly, cortical and thalamic structures are responsible for generalised seizures in both humans and mouse models (Cao et al., 2020).

Mouse models of epilepsy can be divided into genetic and induced (Fig. 2). In genetic models, genetic lesions (or spontaneous mutations) result in the emergence of spontaneous seizures. In induced models, chemical, electrical or acoustic stimulation result in either acute or chronic seizures, depending on the induction method and protocol.

Fig. 2.
  • Download figure
  • Open in new tab
  • Download powerpoint
Fig. 2.

Generation and characterisation of rodent epilepsy models. Genetic models are generated by knockout or knock-in mutagenesis. In induced models, seizures are typically elicited by chemical, electrical or acoustic stimulation of the brain. In both model types, the seizures are the key phenotypic readout and can be accurately and reliably detected using electroencephalography (EEG). Rodent EEG begins with the installation of electrodes or electrode arrays on the skull surface in the case of conventional EEG or beneath the skull for intracranial EEG or electrocorticography. Intracranial electrodes may be positioned at the brain surface or at a higher depth. Synchronised neuronal activity near the electrodes generates the EEG signal that undergoes various stages of amplification, filtering and digitisation before finally being displayed (Moyer et al., 2017). EEG signals may be transmitted from the animal to the computer via a cable (tethered recording) or wirelessly (wireless telemetry). ES cells, embryonic stem cells.

Genetic models

The development of programmable endonuclease-based genome editing such as CRISPR/Cas9 has significantly streamlined the generation of clinically relevant genetic mouse models (Gurumurthy and Lloyd, 2019). Of course, if we want to model genetic epilepsies, CRISPR/Cas9 enables us to generate models of specific missense mutations, as well as complete knockouts, with relative ease. These models are essential for understanding the underlying molecular mechanisms and phenotypic consequences of specific mutations, and can even be used as additional support where variants have been discovered in patients but have not yet been definitively shown to be causative. Genetic mouse models are also invaluable for studying the behavioural outcomes of network disruptions in early development, including the possibility of age-dependent reversibility, and are necessary for testing any gene-specific therapies, whether precision medicine-based therapeutics or gene therapy. There are, of course, challenges posed by the presence or absence of modifier loci in different inbred mouse strains, as discussed below. Similarly, extrapolating results from single-gene models on inbred backgrounds to human cases with highly variable genetic backgrounds will not always be straightforward, but is likely to be more successful in epileptic encephalopathies resulting from highly penetrant mutations in single genes.

The genetic background of mouse models of epilepsy, whether genetic or induced, can of course vary. This potential confounder needs to be considered when comparing results from different studies, even those using mice with apparently the same inbred strain background. However, these phenotypic differences can also be manipulated to identify genetic modifiers, and to modulate seizure severity to suit the purpose of the experiment. For example, the Scn2aQ54 model displays different stage of onset of seizures, seizure frequency and survival, depending on whether the mutation is on a C57BL/6J or SJL/J background. These differences were exploited to identify Cacna1g as an epilepsy modifier gene (Calhoun et al., 2016). Similarly, SJL/J mice with an Scn8aN1768D mutation modelling an epileptic encephalopathy mutation seen in patients have later seizure onset and increased survival in comparison to mice with the same mutation on a C57BL/6J background. Intercross experiments showed that a hypomorphic mutation of Gabra2 in the C57BL6/J strain increased seizure severity, suggesting that upregulation of the Gabra2 product could be a future therapeutic strategy (Yu et al., 2020). Mouse models of different mutations in Scn8a (Table 1) have also been used for preclinical testing of drugs that have moved into clinical trials (Meisler, 2019).

View this table:
  • View inline
  • View popup
  • Download powerpoint
Table 1.

Selected validated models of genetic epilepsies

Importantly, genetic models can also be used to establish whether mutations operate through a gain- or loss-of-function mechanism, which can, in turn, provide crucial context for determining the appropriate therapeutic approach. There are some notable cases where, for example, different mutations in a single gene can lead to either loss or gain of function, depending on whether the mutation is a nonsense or deletion, as opposed to a missense, mutation (Davies et al., 2020; Quraishi et al., 2020). This distinction can be very important for therapy. In a recent striking example, researchers found that epilepsy resulting from mutations in SCN2A usually had an onset at less than 3 months of age, when the mutations were missense, and that these cases responded well to sodium channel blockers. By contrast, cases with disease onset at over 3 months generally had truncating loss-of-function mutations and failed to respond to sodium channel-blocking drugs, illustrating the importance of understanding the underlying mode of action even within a single gene (Wolff et al., 2017).

Although genetic models are clearly more useful for studying the molecular mechanisms of specific epilepsies and for generating targeted therapies, their value as preclinical models can be limited by their seizure phenotypes (or lack thereof). Later, we will discuss the limitations of genetic mouse epilepsy models in terms of seizure manifestation, before discussing how these disadvantages may be overcome.

Induced models

Induced models of epilepsy, in which otherwise healthy animals are made to develop seizures either by exposure to a chemical compound or to electrical stimulation (Fig. 2), have been utilised for over 75 years. They have been instrumental in the identification and development of treatments (Bialer et al., 2013, 2015, 2017, 2018; Fallah and Eubanks, 2020; Löscher, 2011, 2017). Electrical shock or systemic or intracerebral injection of a convulsant compound can trigger frequent and severe seizures in mice, making the phenotypes of these models relatively easy to visually quantify while also allowing for large throughput. From the antiepileptic properties of trimethadione in 1945, which eventually became a standard treatment for absence seizures, which present outwardly as a sudden behavioural arrest (Everett and Richards, 1945), to the maximal electroshock seizure test (Box 1; Toman et al., 1946), which is still the most commonly used initial readout for screens of new ASDs, induced mouse models have played a crucial role in the discovery of many of the major epilepsy treatments in use today (Löscher, 2017).

In so-called kindling (Box 1) protocols, researchers deliver electrical (Leech and McIntyre, 1976) or chemical (Schmidt, 1987) insults on multiple occasions. Once the animals are ‘kindled’, seizures can be elicited on demand and novel treatments can be tested. Similarly, quantifiable motor seizures can be generated acutely by a systemic chemical injection of pilocarpine (Cavalheiro, 1995), kainate (Lévesque and Avoli, 2013) or pentylenetetrazole (Karler et al., 1989). In chronic epilepsy models, neuronal damage and reorganisation of connections lead to the emergence of spontaneously occurring seizures, which better mimic clinical epilepsy, as the seizures can occur at any time. For example, in the systemic pilocarpine (Cavalheiro, 1995) and intrahippocampal kainate (Riban et al., 2002) injection models, an initial insult leads to a status epilepticus event that eventually subsides and is followed by a refractory period lasting days to weeks. This coincides with the emergence of hippocampal sclerosis and spontaneous seizures. Furthermore, some ASDs are ineffective in these models, mimicking TLE, which is often difficult to treat. Induced models are therefore useful platforms for discovering new therapeutic strategies that are able to block intractable seizures (Klein et al., 2015; Lévesque and Avoli, 2013).

Challenges in finding new treatments

Despite progress in developing novel ASDs, a substantial proportion of epileptic patients have drug-resistant epilepsy, for which medication cannot manage the seizures. Under ILAE definitions, the prevalence of drug resistance has been estimated to range from 17% to 33% of all epilepsy cases (Kwan et al., 2010; Ramos-Lizana et al., 2012; Téllez-Zenteno et al., 2014). Large screening consortia, such as the Epilepsy Therapy Screening Program, are now utilizing the above-discussed chronic and kindling models, in which conventional ASDs do not block seizures, to discover novel treatments for drug-resistant epilepsy (Löscher, 2017). However, these models are more relevant to adult TLE, for which disease mechanisms are likely to be very different from those of genetic epilepsy syndromes such as epileptic encephalopathies. As these syndromes often display drug-resistant seizures in association with intellectual disability (Zhang et al., 2017), researchers face the challenge of developing treatment for drug-resistant epilepsies of vastly varying aetiologies.

Induced models can be relied upon to exhibit acute or chronic seizures ‘on demand’ and therefore have high face validity, but their relevance to human epilepsies remains contentious. One may contend that, even though they trigger repeated seizures, chemical or electrical induction are not genuine causes of human epilepsy and will therefore fail to recreate the precise cellular and molecular pathology of any bona fide aetiology, limiting our ability to extrapolate findings to humans (Bertram, 2007; Löscher, 2011). Conversely, genetic models can precisely recapitulate the genetic mutations that cause epilepsy in patients and thus have high construct validity. Although it is clear that researchers need both induced and genetic models for maximal drug development efficiency, genetic models are likely to become increasingly important for developing properly targeted therapies. Indeed, the concept of precision medicine has had some notable successes in epilepsy, albeit mainly in the field of metabolic epilepsies. The most striking example of this is seen in GLUT1 deficiency, where mutations in the SLC2A1 gene, which encodes a glucose transporter in the blood brain barrier (GLUT1), lead to low glucose in the cerebrospinal fluid, resulting in seizures and developmental delay (Seidner et al., 1998). Treating affected children with a ketogenic diet so that their neurons use ketone bodies as an energy source results in good seizure control (Fujii et al., 2016). This progress in precision medicine suggests that the availability of genetically altered mouse lines recapitulating specific clinical mutations could lead to the development of properly targeted, individualised therapies for groups of patients (Helbig and Ellis, 2020).

Problems of two sorts with genetic mouse models

In the field of epilepsy research, the major challenge no longer lies in the generation of genetic models but in assessing their face validity: do these mutant mice have seizures and, if so, how frequent and severe are they?

As in humans, seizures in mice are typically detected and classified using a combination of electroencephalography (EEG) and behavioural signs, such as convulsions or myoclonic jerks (Box 1). Although all seizures involve epileptiform brain activity, not all seizures have obvious behavioural manifestations. For specific models or classes of seizure, ordinal scales such as the classical Racine stages (Box 1) have been developed to measure seizure severity (Chung et al., 2009; Racine, 1972; Singh et al., 2008). The duration of seizures can also be used as a measure of severity (Wu et al., 2020).

Frequent, overt (Box 1), but non-fatal, seizures represent ideal face-valid epileptic phenotypes: not only are they unambiguous, but they represent a direct and easily assayed readout for whether experimental treatment attempts have been effective in reducing seizure frequency or severity. Unfortunately, however, many genetic mouse models of epilepsy have seizure phenotypes that are not so conveniently assayed. In general, there are problems of two sorts: seizures that are difficult to measure and seizures that are overly severe and fatal.

Problems of the first sort: seizures that are difficult to measure

Researchers must reliably detect and score seizures in order to obtain an accurate baseline against which to compare animals receiving experimental treatments. However, many models have relatively rare seizures, making accurate quantification difficult without continuous, long-term EEG-video recording. For example, there are many genetic mouse models in which spontaneous seizures occur only once per week or less (Kash et al., 1997; Malas et al., 2003; McColl et al., 2006; Singh et al., 2008). In some models, seizures are spread unevenly over time. In the widely used A/J (The Jackson Laboratory) mouse strain, seizures occurred mostly during sleep (Strohl et al., 2007), in common with many epilepsy patients (Chokroverty and Nobili, 2017). Other models only have spontaneous seizures within certain age ranges. For example, Tsc1+/− mice develop frequent, spontaneous seizures at post-natal day (P)9 that resolve by 3 weeks of age (Gataullina et al., 2016; Lozovaya et al., 2014). By contrast, Pum2-deficient mice do not develop spontaneous seizures until 5 months of age (Follwaczny et al., 2017). The timeline for spontaneous seizure emergence can also differ substantially between patients and models. For example, mouse models of CDKL5 deficiency disorder have failed to exhibit the early-onset spontaneous seizures that occur in human patients (Amendola et al., 2014; Fehr et al., 2016; Okuda et al., 2017). Instead, spontaneous seizures in these models emerge well into adulthood at around 10 months of age (Mulcahey et al., 2020).

Aside from seizure rarity, many models exhibit non-convulsive electrographic seizures (Box 1) that may be difficult to detect or score. This is especially true for models with absence seizures (Chung et al., 2009; Jarre et al., 2017; Tan et al., 2007). The behavioural arrests typical of these seizures are often frequent but are inherently difficult to quantify without EEG recordings (Chung et al., 2009; Jarre et al., 2017). Other subtle seizures such as brief myoclonic jerks may also prove difficult to monitor. In one study of Fosb-null mice, sudden behavioural arrests and myoclonic jerks were simply not recorded owing to the inherent difficulty in quantifying them (Yutsudo et al., 2013).

Problems of the second sort: severe, fatal seizures

In contrast to models with rare or subtle seizures, many genetic epilepsy models suffer from severe but fatal seizures. Typically, such models show a sudden spike in mortality concomitant with the onset of spontaneous seizures in early life, resulting in a dramatically reduced life expectancy (Bunton-Stasyshyn et al., 2019; Chung et al., 2009; Kerjan et al., 2009; Meikle et al., 2007; Zhang et al., 2016). For example, Dcx; Dclk2-null mice show increased mortality after the onset of spontaneous seizures around P16, with over 90% of mice dying by 5 months of age (Kerjan et al., 2009). This limits the translational value of such genetic models as longitudinal studies are not possible. It is also difficult to ethically justify the use of sudden death as an outcome measure for experimental treatments. Furthermore, as many of these models die after a limited number of seizures, some after a single seizure (Kerjan et al., 2009; Meikle et al., 2007), they are arguably less relevant for modelling epilepsy than as models for SUDEP (Moore et al., 2014; Wagnon et al., 2015).

Can we get around the seizure quantification challenges in genetic models?

For researchers who have developed genetic models but have failed to detect spontaneous seizures, the question is whether the model has problems of the first sort – seizures that are difficult to measure – or whether the model simply has no face-valid phenotype. Answering this question is of key translational importance. Face validity does not only mean that relevant readouts are available for preclinical studies; it ultimately reflects the construct validity of the model, which extends beyond whether an orthologous gene exists. For example, a study has recently shown that mice recapitulating the D252H missense mutation in neuronal translation-elongation factor eEF1A2, which is associated with neurodevelopmental disorders and late childhood epilepsy, do not show face validity for spontaneous seizures or neurodevelopmental deficits, despite the fact that human and murine eEF1A2 are almost identical (Davies et al., 2020). These mice were not studied beyond 1 year of age, and it is possible that spontaneous seizures may have developed later, in line with the late onset in children. Nevertheless, their apparent lack of face validity demonstrates how recapitulating clinically relevant mutations in orthologous genes is not always sufficient to generate a face-valid disease model. Only if the biochemical milieu of the gene products is highly conserved between mice and humans, and only if pathological changes occur within a homologous developmental and neurobiological context, will human epileptogenic mutations also be epileptogenic in mice (Belzung and Lemoine, 2011). The ability to conclusively test face validity in genetic models is therefore vital if we wish to exclude models that are unlikely to provide a window onto human pathology (Garner, 2014).

Where genetic models fail to exhibit detectable spontaneous seizures, one recourse is to induce seizures using chemoconvulsants or auditory stimuli. By varying the auditory stimulus or chemoconvulsant dose, researchers can assess whether genetic mutants have increased seizure susceptibility compared with controls (De Sarro et al., 2004; Musumeci et al., 2000; Okuda et al., 2017; Pacey et al., 2009). This approach seems to marry the precision of genetic models with the utility of induced models in terms of seizure measurement. However, the fact remains that these models do not have seizures without the application of proconvulsant stimuli.

As discussed above, it is clear that the clinical community requires new ASDs with novel targets and mechanisms of action to address drug resistance in epilepsy. There is also a pressing need to develop disease-modifying anti-epileptogenic therapies that can reverse epileptogenesis rather than only providing seizure control (Baulac et al., 2015; Bialer et al., 2018; Pitkänen et al., 2013). If researchers can find ways to validate clinically relevant genetic models of epilepsy, we will have succeeded in capturing the pathophysiology associated with diverse epilepsy aetiologies. These models could then be used for the discovery of novel anti-seizure or anti-epileptogenic drugs.

To improve assessments of face validity in genetic models of epilepsy, researchers have continued to develop video-EEG seizure monitoring and are generating alternatives to EEG-based seizure detection. Continuous video-EEG monitoring is the gold-standard approach for characterising both genetic and induced rodent epilepsy models (Fig. 2), as it facilitates accurate and reliable seizure detection (Gu and Dalton, 2017). Over the past decade, there have been advances in the development of both the hardware and software used to capture and analyse rodent EEGs. Besides the open sharing of system designs and acquisition software, multi-channel electrophysiology amplifiers have decreased in price by orders of magnitude, enabling more research laboratories to rapidly and inexpensively implement recording systems (Hermiz et al., 2016; Siegle et al., 2017; Wasilczuk et al., 2016). Signals can be digitised directly on the mouse through advance head-stage amplifiers, thus negating artefacts caused by cable movement. Meanwhile, advances in microelectrode fabrication techniques allow high channel counts in a relatively small surface area, enabling the acquisition of EEGs with higher spatial resolution and brain coverage (Obien et al., 2014; Wasilczuk et al., 2016). Furthermore, multiple wireless recording systems are now available that allow long-term recordings without tethering mice, providing an opportunity for improved animal welfare (Chang et al., 2011; Jiang et al., 2017; Lidster et al., 2016).

As many epilepsy models have only rare seizures, researchers need to record and monitor animals for a period of weeks to months to establish an accurate seizure baseline (Gu and Dalton, 2017). To streamline the detection and quantification of EEG abnormalities over these timescales, numerous freely available open-source algorithms can automatically detect interictal (Box 1) spikes and/or seizures from rodent EEGs (Anjum et al., 2018; Bergstrom et al., 2013; Brown et al., 2018; Buteneers et al., 2011; Casillas-Espinosa et al., 2019; Colasante et al., 2020; Jang and Cho, 2019; Pfammatter et al., 2019; Tieng et al., 2016, 2017; Wykes et al., 2012), either offline or in real time. EEG traces typically contain artefacts caused by electromagnetic or biophysical interference (Kadam et al., 2017; Pfammatter et al., 2019), but many algorithms can automatically or semi-automatically filter these out (Anjum et al., 2018; Bergstrom et al., 2013; Buteneers et al., 2011; Casillas-Espinosa et al., 2019; Tieng et al., 2016). As a result, many of these systems report sensitivities and specificities approaching 100% for the detection of epileptiform EEG abnormalities (Anjum et al., 2018; Bergstrom et al., 2013; Buteneers et al., 2011; Casillas-Espinosa et al., 2019; Jang and Cho, 2019; Pfammatter et al., 2019; Tieng et al., 2016).

Automating EEG-based detection of seizures will allow researchers to overcome many of the challenges associated with validating genetic epilepsy models with problems of the first sort, including rare seizures or seizures that predominantly occur during certain stages of the sleep-wake or life cycles. Indeed, algorithms have successfully detected and tracked seizures occurring as rarely as 0.3 times per week (Anjum et al., 2018). Moreover, automated seizure classification could remove the subjectivity and human error inherent to manual EEG interpretation that often result in considerable variability (Abend et al., 2011; Duez et al., 2018; Halford et al., 2015).

Despite these technical advances, there remain issues relating to the use of EEG in rodents, especially long-term continuous EEG. The implantation of intracranial electrodes or installation of electrode arrays is an invasive and time-consuming surgical procedure, which itself could cause damage leading to epileptic activity (Burman and Parrish, 2018). Moreover, to prevent animal injury and damage to recording equipment, animals are often housed singly, both post-operatively and over the duration of continuous EEG recordings, which can last for months. Mice and rats are social animals and it is now well established that single housing causes stress (Ieraci et al., 2016; Lukkes et al., 2009; Manouze et al., 2019; Weintraub et al., 2010). Social isolation of young mice results not only in behavioural abnormalities but also increased seizure susceptibility in adulthood (Amiri et al., 2017). There is also evidence that social isolation can affect seizure phenotypes in adult male mice (Amiri et al., 2014; Matsumoto et al., 2003). Meanwhile, a recent study in rats showed that socially isolated animals had a 16-fold increase in spontaneous seizure frequency following treatment with the cholinergic agonist pilocarpine (Manouze et al., 2019).

Researchers need to develop accurate and reliable methods of seizure detection that are minimally invasive and that can be employed in group-housed rodents over extended time periods. In recent years, the most promising developments towards this goal have come from radio-frequency identification (RFID)-assisted in-cage monitoring systems (Fig. 3).

Fig. 3.
  • Download figure
  • Open in new tab
  • Download powerpoint
Fig. 3.

RFID-assisted in-cage monitoring system. Standard rodent cages are placed within the in-cage monitoring system, where cameras positioned above or at the side of the cage allow continuous video monitoring. Infra-red (IR) cameras and illumination are preferred as they allow animals to be visualised during the dark phase of their 24-h light/dark cycle (Bains et al., 2016; Gu and Dalton, 2017). The majority of in-cage monitoring systems can only monitor single animals (Bains et al., 2018). Increasingly, subcutaneous radio-frequency identification (RFID) chips (depicted as green tags in the figure) are being used to discriminate individual animals within groups (Bains et al., 2016; Krackow et al., 2010; Peleh et al., 2019). The position of several RFID-tagged animals can be continuously tracked as they move over an RFID antenna array (red dots) beneath the home cage and/or near areas such as water bottles or food hoppers.

In-cage monitoring systems were developed to meet the need for continuous assessment of unforced behaviours in rodents. At present, the majority of these systems require single housing. However, a growing number of systems are capable of continuously monitoring individual animals within groups using subcutaneous RFID tags (Bains et al., 2016; Krackow et al., 2010; Peleh et al., 2019). Although there are currently no in-cage monitoring systems with validated seizure-detection capabilities, both continuous video capture and animal movement tracking present opportunities for non-invasive detection of overt seizures. In a recent study, Jankovic et al. (2019) employed a video-based movement tracking system called EthoVisionXT to continuously monitor animals following repeated injections of the convulsing agent pentylenetetrazole (Jankovic et al., 2019). The authors found that convulsive seizures (Box 1) were associated with brief spikes in whole-animal mobility and used these spikes to highlight sections of the recording to further screen for seizures. Although the study did not report the sensitivity and specificity of this approach, it established the potential for mobility-based seizure screening in rodents exhibiting the most overt seizures.

Aside from gross motion tracking, home-cage video monitoring could eventually enable the detection of behavioural seizures (Box 1) based on finer visual features. Machine-learning approaches have been used to generate video-based classifiers that can recognise and score a range of rodent behaviours in real time or offline. The repertoire of such detectable behaviours is constantly expanding and currently includes locomotion and climbing (Bains et al., 2018), eating and rearing (Aniszewska et al., 2014), and more subtle behaviours such as scratching (Park et al., 2019) and head bobbing (Baker, 2011). Video-based classifiers for seizures have not yet been developed, but many of the behaviours for which classifiers currently exist – such as rearing, scratching and head bobbing – are seen in rodent seizures (Kandratavicius et al., 2014) and could form the basis for future classifiers. The generation of video-based classifiers for overt seizures is likely to be labour intensive, requiring manual classification of many instances of a given seizure type (Sturman et al., 2020). However, once classifiers are developed for a given type of seizure, they could be used to characterise other models with similar seizure presentations.

Movement or video-based seizure detection would necessarily be limited to seizures with overt behavioural involvement. As discussed above, many rodent epilepsy models exhibit only electrographic or absence seizures, which will always require EEG for detection. Nevertheless, robust, non-invasive seizure monitoring would represent an important refinement for the subset of epilepsy models that exhibit overt seizures and that have already been characterised electrographically.

Even without seizure-detection capabilities, in-cage monitoring is a relevant approach in preclinical epilepsy research. There is a growing appreciation of epilepsy as a spectrum disorder including not only spontaneous and recurrent seizures, but also cognitive, social and behavioural deficits (Fisher et al., 2014; Greenberg and Subaran, 2011; Holmes and Noebels, 2016; Sirven, 2015). These deficits can be the sequelae of chronic seizures or epileptiform activity, i.e. epileptic encephalopathy, but can also arise in parallel with seizures as a result of genetic mutations. In-cage monitoring of group-housed animals offers the opportunity to study levels of activity and social interaction in an ethologically relevant context, unlocking new behavioural domains in which face-valid phenotypes might be present. This could enhance the translational value of genetic epilepsy models by allowing direct assessment of any reversal of social and behavioural deficits during preclinical trials.

Conclusions

To make progress in finding new treatments for epilepsy, as with all disorders, researchers will need to develop a range of different model systems (Box 2) and use them in a rational, integrated way. Initial drug screening can be carried out cheaply and efficiently in model systems like zebrafish larvae, where specific genetic alterations can be induced using CRISPR gene editing. Convulsive swimming movements can be captured with video monitoring and scored, with larvae arrayed in microtitre plates in which different wells can be exposed to different drugs. This system allows for initial high-throughput, relatively cheap screening that can then be followed up with electrophysiological confirmation (Griffin et al., 2016). Candidate drugs from such screens can then be directly tested in appropriate mammalian models; ultimately, rational drug design may allow direct mammalian testing approaches.

Novel therapies for epilepsies, even for those not caused by mutations in a single gene, may also emerge from the fields of gene therapy/gene targeting. Conventional gene therapy, in which loss of function of a specific gene is corrected by delivery of a viral vector encoding the missing product, is already being tested in monogenic epilepsy models (e.g. Niibori et al., 2020). Further developments include the use of antisense oligonucleotides to upregulate expression of the sodium channel Nav1.1, leading to a reduction in seizure frequency and severity in a mouse model of Dravet syndrome (Han et al., 2020).

Additional novel approaches that target the underlying mechanisms rather than specific genes could allow wider populations to be treated. Recent striking examples include the testing of autoregulatory gene therapy, in which neurons are inhibited in response to rises in extracellular glutamate (Lieb et al., 2018) and the use of CRISPRa (which modulates promoters) to upregulate expression of the potassium channel gene Kcna1 in excitatory neurons, dampening neuronal excitability and reducing seizure frequency in a mouse model (Colasante et al., 2020).

Thus, the use of multi-pronged strategies may also allow us eventually to circle back from the initial blunt approach of finding drugs that treated seizures with no regard to underlying cause, to finding that therapies initially designed for monogenic epilepsies may, in fact, benefit much broader patient groups on the basis of their underlying genetic susceptibilities. Heritability estimates based on twin studies support a strong genetic component in epilepsy overall (Kjeldsen et al., 2001; Miller et al., 1998), and up to 80% of epilepsy cases are attributable to genetics (Koeleman, 2018), with many considered to have polygenic inheritance patterns (Hildebrand et al., 2013; Koeleman, 2018). Furthermore, many genes mutated in severe early-onset genetic epilepsies have also been implicated in other types of epilepsy, either as milder mutations (Qaiser et al., 2020), as genetic modifiers (Mirza et al., 2017), or on the basis of network analysis showing overlap between genetic causes and drug targets (Delahaye-Duriez et al., 2016). In addition, it is becoming clear that diverse neurodevelopmental disorders converge onto common molecular pathways (Auerbach et al., 2011; Barnes et al., 2015). It is therefore possible that animal models of monogenic epilepsies may yield therapies with broader treatment applications.

If genetic models can lead to the development and testing of specific therapies aimed at monogenic epilepsies, the same drugs can then be tested in induced seizure models on the basis that altering the expression or function of target genes may have wider applicability. This can, in turn, benefit much broader patient populations and thus help to alleviate problems associated with epilepsy and other neurodevelopmental disorders in large numbers of individuals and their families.

Footnotes

  • Competing interests

    The authors declare no competing or financial interests.

  • Funding

    G.F.M. is supported by a studentship from Medical Research Scotland. Research in the laboratories of A.G.-S. and C.M.A. is supported by the Simons Initiative for the Developing Brain.

  • © 2021. Published by The Company of Biologists Ltd
http://creativecommons.org/licenses/by/4.0

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

References

  1. ↵
    1. Abend, N. S.,
    2. Gutierrez-Colina, A.,
    3. Zhao, H.,
    4. Guo, R.,
    5. Marsh, E.,
    6. Clancy, R. R. and
    7. Dlugos, D. J.
    (2011). Interobserver reproducibility of electroencephalogram interpretation in critically ill children. J. Clin. Neurophysiol. 28, 15-19. doi:10.1097/WNP.0b013e3182051123
    OpenUrlCrossRefPubMed
  2. ↵
    1. Accardi, M. V.,
    2. Huang, H. and
    3. Authier, S.
    (2018). Seizure liability assessments using the hippocampal tissue slice: Comparison of non-clinical species. J. Pharmacol. Toxicol. Methods 93, 59-68. doi:10.1016/j.vascn.2017.11.003
    OpenUrlCrossRef
  3. ↵
    1. Afrikanova, T.,
    2. Serruys, A.-S. K.,
    3. Buenafe, O. E. M.,
    4. Clinckers, R.,
    5. Smolders, I.,
    6. de Witte, P. A. M.,
    7. Crawford, A. D. and
    8. Esguerra, C. V.
    (2013). Validation of the zebrafish pentylenetetrazol seizure model: locomotor versus electrographic responses to antiepileptic drugs. PLoS ONE 8, e54166. doi:10.1371/journal.pone.0054166
    OpenUrlCrossRefPubMed
    1. Amador, A.,
    2. Bostick, C. D.,
    3. Olson, H.,
    4. Peters, J.,
    5. Camp, C. R.,
    6. Krizay, D.,
    7. Chen, W.,
    8. Han, W.,
    9. Tang, W.,
    10. Kanber, A. et al.
    (2020). Modelling and treating GRIN2A developmental and epileptic encephalopathy in mice. Brain 143, 2039-2057. doi:10.1093/brain/awaa147
    OpenUrlCrossRef
  4. ↵
    1. Amendola, E.,
    2. Zhan, Y.,
    3. Mattucci, C.,
    4. Castroflorio, E.,
    5. Calcagno, E.,
    6. Fuchs, C.,
    7. Lonetti, G.,
    8. Silingardi, D.,
    9. Vyssotski, A. L.,
    10. Farley, D. et al.
    (2014). Mapping pathological phenotypes in a mouse model of CDKL5 disorder. PLoS ONE 9, e91613. doi:10.1371/journal.pone.0091613
    OpenUrlCrossRefPubMed
  5. ↵
    1. Amiri, S.,
    2. Shirzadian, A.,
    3. Haj-Mirzaian, A.,
    4. Imran-Khan, M.,
    5. Rahimi Balaei, M.,
    6. Kordjazy, N.,
    7. Dehpour, A. R. and
    8. Mehr, S. E.
    (2014). Involvement of the nitrergic system in the proconvulsant effect of social isolation stress in male mice. Epilepsy Behav. 41, 158-163. doi:10.1016/j.yebeh.2014.09.080
    OpenUrlCrossRef
  6. ↵
    1. Amiri, S.,
    2. Haj-Mirzaian, A.,
    3. Amini-Khoei, H.,
    4. Razmi, A.,
    5. Shirzadian, A.,
    6. Rahimi-Balaei, M.,
    7. Olson, C. O.,
    8. Mohsenzadeh, A.,
    9. Rastegar, M.,
    10. Zarrindast, M.-R. et al.
    (2017). Protective effects of gabapentin against the seizure susceptibility and comorbid behavioral abnormalities in the early socially isolated mice. Eur. J. Pharmacol. 797, 106-114. doi:10.1016/j.ejphar.2017.01.024
    OpenUrlCrossRefPubMed
  7. ↵
    1. Aniszewska, A.,
    2. Szymanski, J.,
    3. Winnicka, M. M. and
    4. Turlejski, K.
    (2014). Interleukin 6 deficiency affects spontaneous activity of mice in age- and sex-dependent manner. Acta Neurobiol. Exp. (Wars.) 74, 424-432.
    OpenUrl
  8. ↵
    1. Anjum, S. M. M.,
    2. Käufer, C.,
    3. Hopfengärtner, R.,
    4. Waltl, I.,
    5. Bröer, S. and
    6. Löscher, W.
    (2018). Automated quantification of EEG spikes and spike clusters as a new read out in Theiler's virus mouse model of encephalitis-induced epilepsy. Epilepsy Behav. 88, 189-204. doi:10.1016/j.yebeh.2018.09.016
    OpenUrlCrossRef
    1. Asinof, S.,
    2. Mahaffey, C.,
    3. Beyer, B.,
    4. Frankel, W. N. and
    5. Boumil, R.
    (2016). Dynamin 1 isoform roles in a mouse model of severe childhood epileptic encephalopathy. Neurobiol. Dis. 95, 1-11. doi:10.1016/j.nbd.2016.06.014
    OpenUrlCrossRef
  9. ↵
    1. Auerbach, B. D.,
    2. Osterweil, E. K. and
    3. Bear, M. F.
    (2011). Mutations causing syndromic autism define an axis of synaptic pathophysiology. Nature 480, 63-68. doi:10.1038/nature10658
    OpenUrlCrossRefPubMedWeb of Science
  10. ↵
    1. Avdesh, A.,
    2. Chen, M.,
    3. Martin-Iverson, M. T.,
    4. Mondal, A.,
    5. Ong, D.,
    6. Rainey-Smith, S.,
    7. Taddei, K.,
    8. Lardelli, M.,
    9. Groth, D. M.,
    10. Verdile, G. et al.
    (2012). Regular care and maintenance of a zebrafish (Danio rerio) laboratory: an introduction. J. Vis. Exp., e4196. doi:10.3791/4196
    OpenUrlCrossRefPubMed
  11. ↵
    1. Bains, R. S.,
    2. Cater, H. L.,
    3. Sillito, R. R.,
    4. Chartsias, A.,
    5. Sneddon, D.,
    6. Concas, D.,
    7. Keskivali-Bond, P.,
    8. Lukins, T. C.,
    9. Wells, S.,
    10. Acevedo Arozena, A. et al.
    (2016). Analysis of individual mouse activity in group housed animals of different inbred strains using a novel automated home cage analysis system. Front. Behav. Neurosci. 10, 106. doi:10.3389/fnbeh.2016.00106
    OpenUrlCrossRef
  12. ↵
    1. Bains, R. S.,
    2. Wells, S.,
    3. Sillito, R. R.,
    4. Armstrong, J. D.,
    5. Cater, H. L.,
    6. Banks, G. and
    7. Nolan, P. M.
    (2018). Assessing mouse behaviour throughout the light/dark cycle using automated in-cage analysis tools. J. Neurosci. Methods 300, 37-47. doi:10.1016/j.jneumeth.2017.04.014
    OpenUrlCrossRefPubMed
  13. ↵
    1. Baker, M.
    (2011). Animal models: inside the minds of mice and men. Nature 475, 123-128. doi:10.1038/475123a
    OpenUrlCrossRefPubMed
  14. ↵
    1. Baraban, S. C.,
    2. Dinday, M. T. and
    3. Hortopan, G. A.
    (2013). Drug screening in Scn1a zebrafish mutant identifies clemizole as a potential Dravet syndrome treatment. Nat. Commun. 4, 2410. doi:10.1038/ncomms3410
    OpenUrlCrossRefPubMed
  15. ↵
    1. Bargmann, C. I.
    (1998). Neurobiology of the Caenorhabditis elegans genome. Science 282, 2028-2033. doi:10.1126/science.282.5396.2028
    OpenUrlAbstract/FREE Full Text
  16. ↵
    1. Barnes, S. A.,
    2. Wijetunge, L. S.,
    3. Jackson, A. D.,
    4. Katsanevaki, D.,
    5. Osterweil, E. K.,
    6. Komiyama, N. H.,
    7. Grant, S. G. N.,
    8. Bear, M. F.,
    9. Nägerl, U. V.,
    10. Kind, P. C. et al.
    (2015). Convergence of hippocampal pathophysiology in Syngap+/− and Fmr1-/y mice. J. Neurosci. 35, 15073-15081. doi:10.1523/JNEUROSCI.1087-15.2015
    OpenUrlAbstract/FREE Full Text
  17. ↵
    1. Baulac, M.,
    2. de Boer, H.,
    3. Elger, C.,
    4. Glynn, M.,
    5. Kälviäinen, R.,
    6. Little, A.,
    7. Mifsud, J.,
    8. Perucca, E.,
    9. Pitkänen, A. and
    10. Ryvlin, P.
    (2015). Epilepsy priorities in Europe: a report of the ILAE-IBE epilepsy advocacy Europe Task Force. Epilepsia 56, 1687-1695. doi:10.1111/epi.13201
    OpenUrlCrossRef
  18. ↵
    1. Beghi, E. and
    2. Giussani, G.
    (2018). Aging and the epidemiology of epilepsy. Neuroepidemiology 51, 216-223. doi:10.1159/000493484
    OpenUrlCrossRefPubMed
  19. ↵
    1. Belzung, C. and
    2. Lemoine, M.
    (2011). Criteria of validity for animal models of psychiatric disorders: focus on anxiety disorders and depression. Biol. Mood Anxiety Disord. 1, 9. doi:10.1186/2045-5380-1-9
    OpenUrlCrossRefPubMed
  20. ↵
    1. Bergstrom, R. A.,
    2. Choi, J. H.,
    3. Manduca, A.,
    4. Shin, H.-S.,
    5. Worrell, G. A. and
    6. Howe, C. L.
    (2013). Automated identification of multiple seizure-related and interictal epileptiform event types in the EEG of mice. Sci. Rep. 3, 1483. doi:10.1038/srep01483
    OpenUrlCrossRefPubMed
  21. ↵
    1. Bertram, E.
    (2007). The relevance of kindling for human epilepsy. Epilepsia 48 Suppl. 2, 65-74. doi:10.1111/j.1528-1167.2007.01068.x
    OpenUrlCrossRef
  22. ↵
    1. Bialer, M.,
    2. Johannessen, S. I.,
    3. Levy, R. H.,
    4. Perucca, E.,
    5. Tomson, T. and
    6. White, H. S.
    (2013). Progress report on new antiepileptic drugs: a summary of the Eleventh Eilat Conference (EILAT XI). Epilepsy Res. 103, 2-30. doi:10.1016/j.eplepsyres.2012.10.001
    OpenUrlCrossRefPubMed
  23. ↵
    1. Bialer, M.,
    2. Johannessen, S. I.,
    3. Levy, R. H.,
    4. Perucca, E.,
    5. Tomson, T. and
    6. White, H. S.
    (2015). Progress report on new antiepileptic drugs: a summary of the Twelfth Eilat Conference (EILAT XII). Epilepsy Res. 111, 85-141. doi:10.1016/j.eplepsyres.2015.01.001
    OpenUrlCrossRefPubMed
  24. ↵
    1. Bialer, M.,
    2. Johannessen, S. I.,
    3. Levy, R. H.,
    4. Perucca, E.,
    5. Tomson, T. and
    6. White, H. S.
    (2017). Progress report on new antiepileptic drugs: a summary of the Thirteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XIII). Epilepsia 58, 181-221. doi:10.1111/epi.13634
    OpenUrlCrossRefPubMed
  25. ↵
    1. Bialer, M.,
    2. Johannessen, S. I.,
    3. Koepp, M. J.,
    4. Levy, R. H.,
    5. Perucca, E.,
    6. Tomson, T. and
    7. White, H. S.
    (2018). Progress report on new antiepileptic drugs: a summary of the Fourteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XIV). I. Drugs in preclinical and early clinical development. Epilepsia 59, 1811-1841. doi:10.1111/epi.14557
    OpenUrlCrossRef
  26. ↵
    1. Bier, E.
    (2005). Drosophila, the golden bug, emerges as a tool for human genetics. Nat. Rev. Genet. 6, 9-23. doi:10.1038/nrg1503
    OpenUrlCrossRefPubMedWeb of Science
  27. ↵
    1. Brown, R.,
    2. Lam, A. D.,
    3. Gonzalez-Sulser, A.,
    4. Ying, A.,
    5. Jones, M.,
    6. Chou, R. C.-C.,
    7. Tzioras, M.,
    8. Jordan, C. Y.,
    9. Jedrasiak-Cape, I.,
    10. Hemonnot, A.-L. et al.
    (2018). Circadian and brain state modulation of network hyperexcitability in Alzheimer's disease. Eneuro 5, ENEURO.0426-17. doi:10.1523/ENEURO.0426-17.2018
    OpenUrlAbstract/FREE Full Text
    1. Brusa, R.,
    2. Zimmermann, F.,
    3. Koh, D. S.,
    4. Feldmeyer, D.,
    5. Gass, P.,
    6. Seeburg, P. H. and
    7. Sprengel, R.
    (1995). Early-onset epilepsy and postnatal lethality associated with an editing-deficient GluR-B allele in mice. Science 270, 1677-1680. doi:10.1126/science.270.5242.1677
    OpenUrlAbstract/FREE Full Text
  28. ↵
    1. Bunton-Stasyshyn, R. K. A.,
    2. Wagnon, J. L.,
    3. Wengert, E. R.,
    4. Barker, B. S.,
    5. Faulkner, A.,
    6. Wagley, P. K.,
    7. Bhatia, K.,
    8. Jones, J. M.,
    9. Maniaci, M. R.,
    10. Parent, J. M. et al.
    (2019). Prominent role of forebrain excitatory neurons in SCN8A encephalopathy. Brain 142, 362-375. doi:10.1093/brain/awy324
    OpenUrlCrossRef
  29. ↵
    1. Burman, R. J. and
    2. Parrish, R. R.
    (2018). The widespread network effects of focal epilepsy. J. Neurosci. 38, 8107-8109. doi:10.1523/JNEUROSCI.1471-18.2018
    OpenUrlFREE Full Text
  30. ↵
    1. Burrows, D. R. W.,
    2. Samarut, É.,
    3. Liu, J.,
    4. Baraban, S. C.,
    5. Richardson, M. P.,
    6. Meyer, M. P. and
    7. Rosch, R. E.
    (2020). Imaging epilepsy in larval zebrafish. Eur. J. Paediatr. Neurol. 24, 70-80. doi:10.1016/j.ejpn.2020.01.006
    OpenUrlCrossRef
  31. ↵
    1. Buteneers, P.,
    2. Verstraeten, D.,
    3. van Mierlo, P.,
    4. Wyckhuys, T.,
    5. Stroobandt, D.,
    6. Raedt, R.,
    7. Hallez, H. and
    8. Schrauwen, B.
    (2011). Automatic detection of epileptic seizures on the intra-cranial electroencephalogram of rats using reservoir computing. Artif. Intell. Med. 53, 215-223. doi:10.1016/j.artmed.2011.08.006
    OpenUrlCrossRefPubMed
  32. ↵
    1. Calhoun, J. D.,
    2. Hawkins, N. A.,
    3. Zachwieja, N. J. and
    4. Kearney, J. A.
    (2016). Cacna1g is a genetic modifier of epilepsy caused by mutation of voltage-gated sodium channel Scn2a. Epilepsia 57, e103-e107. doi:10.1111/epi.13390
    OpenUrlCrossRefPubMed
  33. ↵
    1. Cao, F.,
    2. Liu, J. J.,
    3. Zhou, S.,
    4. Cortez, M. A.,
    5. Snead, O. C.,
    6. Han, J. and
    7. Jia, Z.
    (2020). Neuroligin 2 regulates absence seizures and behavioral arrests through GABAergic transmission within the thalamocortical circuitry. Nat. Commun. 11, 3744. doi:10.1038/s41467-020-17560-3
    OpenUrlCrossRef
  34. ↵
    1. Casillas-Espinosa, P. M.,
    2. Sargsyan, A.,
    3. Melkonian, D. and
    4. O'Brien, T. J.
    (2019). A universal automated tool for reliable detection of seizures in rodent models of acquired and genetic epilepsy. Epilepsia 60, 783-791. doi:10.1111/epi.14691
    OpenUrlCrossRef
  35. ↵
    1. Cavalheiro, E. A.
    (1995). The pilocarpine model of epilepsy. Ital. J. Neurol. Sci. 16, 33-37. doi:10.1007/BF02229072
    OpenUrlCrossRefPubMedWeb of Science
    1. Chabrol, E.,
    2. Navarro, V.,
    3. Provenzano, G.,
    4. Cohen, I.,
    5. Dinocourt, C.,
    6. Rivaud-Péchoux, S.,
    7. Fricker, D.,
    8. Baulac, M.,
    9. Miles, R.,
    10. Leguern, E. et al.
    (2010). Electroclinical characterization of epileptic seizures in leucine-rich, glioma-inactivated 1-deficient mice. Brain 133, 2749-2762. doi:10.1093/brain/awq171
    OpenUrlCrossRefPubMedWeb of Science
  36. ↵
    1. Chang, P.,
    2. Hashemi, K. S. and
    3. Walker, M. C.
    (2011). A novel telemetry system for recording EEG in small animals. J. Neurosci. Methods 201, 106-115. doi:10.1016/j.jneumeth.2011.07.018
    OpenUrlCrossRefPubMedWeb of Science
    1. Chao, H.-T.,
    2. Chen, H.,
    3. Samaco, R. C.,
    4. Xue, M.,
    5. Chahrour, M.,
    6. Yoo, J.,
    7. Neul, J. L.,
    8. Gong, S.,
    9. Lu, H.-C.,
    10. Heintz, N. et al.
    (2010). Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature 468, 263-269. doi:10.1038/nature09582
    OpenUrlCrossRefPubMedWeb of Science
  37. ↵
    1. Chatterjee, N. and
    2. Sinha, S.
    (2007). Understanding the mind of a worm: hierarchical network structure underlying nervous system function in C. elegans.Prog. Brain Res. 168, 145-153. doi:10.1016/S0079-6123(07)68012-1
    OpenUrlCrossRefWeb of Science
    1. Chen, C.,
    2. Westenbroek, R. E.,
    3. Xu, X.,
    4. Edwards, C. A.,
    5. Sorenson, D. R.,
    6. Chen, Y.,
    7. McEwen, D. P.,
    8. O'Malley, H. A.,
    9. Bharucha, V.,
    10. Meadows, L. S. et al.
    (2004). Mice lacking sodium channel beta1 subunits display defects in neuronal excitability, sodium channel expression, and nodal architecture. J. Neurosci. 24, 4030-4042. doi:10.1523/JNEUROSCI.4139-03.2004
    OpenUrlAbstract/FREE Full Text
  38. ↵
    1. Cho, S.-J.,
    2. Byun, D.,
    3. Nam, T.-S.,
    4. Choi, S.-Y.,
    5. Lee, B.-G.,
    6. Kim, M.-K. and
    7. Kim, S.
    (2017). Zebrafish as an animal model in epilepsy studies with multichannel EEG recordings. Sci. Rep. 7, 3099. doi:10.1038/s41598-017-03482-6
    OpenUrlCrossRef
  39. ↵
    1. Chokroverty, S. and
    2. Nobili, L.
    (2017). Sleep and epilepsy. In Sleep Disorders Medicine (ed. S. Chokroverty), pp. 915-961. New York, NY: Springer New York.
  40. ↵
    1. Chung, W. K.,
    2. Shin, M.,
    3. Jaramillo, T. C.,
    4. Leibel, R. L.,
    5. LeDuc, C. A.,
    6. Fischer, S. G.,
    7. Tzilianos, E.,
    8. Gheith, A. A.,
    9. Lewis, A. S. and
    10. Chetkovich, D. M.
    (2009). Absence epilepsy in apathetic, a spontaneous mutant mouse lacking the h channel subunit, HCN2. Neurobiol. Dis. 33, 499-508. doi:10.1016/j.nbd.2008.12.004
    OpenUrlCrossRefPubMedWeb of Science
  41. ↵
    1. Colasante, G.,
    2. Qiu, Y.,
    3. Massimino, L.,
    4. Di Berardino, C.,
    5. Cornford, J. H.,
    6. Snowball, A.,
    7. Weston, M.,
    8. Jones, S. P.,
    9. Giannelli, S.,
    10. Lieb, A. et al.
    (2020). In vivo CRISPRa decreases seizures and rescues cognitive deficits in a rodent model of epilepsy. Brain 143, 891-905. doi:10.1093/brain/awaa045
    OpenUrlCrossRef
    1. Creson, T. K.,
    2. Rojas, C.,
    3. Hwaun, E.,
    4. Vaissiere, T.,
    5. Kilinc, M.,
    6. Jimenez-Gomez, A.,
    7. Holder, J. L.,
    8. Tang, J.,
    9. Colgin, L. L.,
    10. Miller, C. A. et al.
    (2019). Re-expression of SynGAP protein in adulthood improves translatable measures of brain function and behavior. eLife 8, e46752. doi:10.7554/eLife.46752
    OpenUrlCrossRefPubMed
  42. ↵
    1. Danober, L.,
    2. Deransart, C.,
    3. Depaulis, A.,
    4. Vergnes, M. and
    5. Marescaux, C.
    (1998). Pathophysiological mechanisms of genetic absence epilepsy in the rat. Prog. Neurobiol. 55, 27-57. doi:10.1016/S0301-0082(97)00091-9
    OpenUrlCrossRefPubMedWeb of Science
    1. Davies, F. C. J.,
    2. Hope, J. E.,
    3. McLachlan, F.,
    4. Nunez, F.,
    5. Doig, J.,
    6. Bengani, H.,
    7. Smith, C. and
    8. Abbott, C. M.
    (2017). Biallelic mutations in the gene encoding eEF1A2 cause seizures and sudden death in F0 mice. Sci. Rep. 7, 46019. doi:10.1038/srep46019
    OpenUrlCrossRef
  43. ↵
    1. Davies, F. C. J.,
    2. Hope, J. E.,
    3. McLachlan, F.,
    4. Marshall, G. F.,
    5. Kaminioti-Dumont, L.,
    6. Qarkaxhija, V.,
    7. Nunez, F.,
    8. Dando, O.,
    9. Smith, C.,
    10. Wood, E. et al.
    (2020). Recapitulation of the EEF1A2 D252H neurodevelopmental disorder-causing missense mutation in mice reveals a toxic gain of function. Hum. Mol. Genet. 29, 1592-1606. doi:10.1093/hmg/ddaa042
    OpenUrlCrossRef
    1. D'Cruz, J. A.,
    2. Wu, C.,
    3. Zahid, T.,
    4. El-Hayek, Y.,
    5. Zhang, L. and
    6. Eubanks, J. H.
    (2010). Alterations of cortical and hippocampal EEG activity in MeCP2-deficient mice. Neurobiol. Dis. 38, 8-16. doi:10.1016/j.nbd.2009.12.018
    OpenUrlCrossRefPubMedWeb of Science
  44. ↵
    1. de Ligt, J.,
    2. Willemsen, M. H.,
    3. van Bon, B. W. M.,
    4. Kleefstra, T.,
    5. Yntema, H. G.,
    6. Kroes, T.,
    7. Vulto-van Silfhout, A. T.,
    8. Koolen, D. A.,
    9. de Vries, P.,
    10. Gilissen, C. et al.
    (2012). Diagnostic exome sequencing in persons with severe intellectual disability. N. Engl. J. Med. 367, 1921-1929. doi:10.1056/NEJMoa1206524
    OpenUrlCrossRefPubMedWeb of Science
  45. ↵
    1. De Sarro, G.,
    2. Russo, E.,
    3. Ferreri, G.,
    4. Giuseppe, B.,
    5. Flocco, M. A.,
    6. Di Paola, E. D. and
    7. De Sarro, A.
    (2004). Seizure susceptibility to various convulsant stimuli of knockout interleukin-6 mice. Pharmacol. Biochem. Behav. 77, 761-766. doi:10.1016/j.pbb.2004.01.012
    OpenUrlCrossRefPubMed
  46. ↵
    1. Delahaye-Duriez, A.,
    2. Srivastava, P.,
    3. Shkura, K.,
    4. Langley, S. R.,
    5. Laaniste, L.,
    6. Moreno-Moral, A.,
    7. Danis, B.,
    8. Mazzuferi, M.,
    9. Foerch, P.,
    10. Gazina, E. V. et al.
    (2016). Rare and common epilepsies converge on a shared gene regulatory network providing opportunities for novel antiepileptic drug discovery. Genome Biol. 17, 245. doi:10.1186/s13059-016-1097-7
    OpenUrlCrossRef
  47. ↵
    1. Dhindsa, R. S.,
    2. Bradrick, S. S.,
    3. Yao, X.,
    4. Heinzen, E. L.,
    5. Petrovski, S.,
    6. Krueger, B. J.,
    7. Johnson, M. R.,
    8. Frankel, W. N.,
    9. Petrou, S.,
    10. Boumil, R. M. et al.
    (2015). Epileptic encephalopathy-causing mutations in DNM1 impair synaptic vesicle endocytosis. Neurol. Genet. 1, e4. doi:10.1212/01.NXG.0000464295.65736.da
    OpenUrlAbstract/FREE Full Text
  48. ↵
    1. Duez, C. H. V.,
    2. Ebbesen, M. Q.,
    3. Benedek, K.,
    4. Fabricius, M.,
    5. Atkins, M. D.,
    6. Beniczky, S.,
    7. Kjaer, T. W.,
    8. Kirkegaard, H. and
    9. Johnsen, B.
    (2018). Large inter-rater variability on EEG-reactivity is improved by a novel quantitative method. Clin. Neurophysiol. 129, 724-730. doi:10.1016/j.clinph.2018.01.054
    OpenUrlCrossRef
  49. ↵
    1. Dyhrfjeld-Johnsen, J.,
    2. Berdichevsky, Y.,
    3. Swiercz, W.,
    4. Sabolek, H. and
    5. Staley, K. J.
    (2010). Interictal spikes precede ictal discharges in an organotypic hippocampal slice culture model of epileptogenesis. J. Clin. Neurophysiol. 27, 418-424. doi:10.1097/WNP.0b013e3181fe0709
    OpenUrlCrossRefPubMed
  50. ↵
    1. Eggenschwiler, R.,
    2. Moslem, M.,
    3. Fráguas, M. S.,
    4. Galla, M.,
    5. Papp, O.,
    6. Naujock, M.,
    7. Fonfara, I.,
    8. Gensch, I.,
    9. Wähner, A.,
    10. Beh-Pajooh, A. et al.
    (2016). Improved bi-allelic modification of a transcriptionally silent locus in patient-derived iPSC by Cas9 nickase. Sci. Rep. 6, 38198. doi:10.1038/srep38198
    OpenUrlCrossRef
  51. ↵
    1. Ellenbroek, B. and
    2. Youn, J.
    (2016). Rodent models in neuroscience research: is it a rat race? Dis. Model. Mech. 9, 1079-1087. doi:10.1242/dmm.026120
    OpenUrlAbstract/FREE Full Text
  52. ↵
    1. Everett, G. M. and
    2. Richards, R. K.
    (1945). Comparative Anticonvulsive Action of 3,5,5-trimethyloxazolidine-2,4-dione (Tridione), Dilantin and Phenobarbital. Anesthesiology 6, 448. doi:10.1097/00000542-194507000-00047
    OpenUrlCrossRef
  53. ↵
    1. Fallah, M. S. and
    2. Eubanks, J. H.
    (2020). Seizures in mouse models of rare neurodevelopmental disorders. Neuroscience 445, 50-68. doi:10.1016/j.neuroscience.2020.01.041
    OpenUrlCrossRef
  54. ↵
    1. Fehr, S.,
    2. Wong, K.,
    3. Chin, R.,
    4. Williams, S.,
    5. de Klerk, N.,
    6. Forbes, D.,
    7. Krishnaraj, R.,
    8. Christodoulou, J.,
    9. Downs, J. and
    10. Leonard, H.
    (2016). Seizure variables and their relationship to genotype and functional abilities in the CDKL5 disorder. Neurology 87, 2206-2213. doi:10.1212/WNL.0000000000003352
    OpenUrlCrossRef
  55. ↵
    1. Feng, Y.,
    2. Zhang, S.,
    3. Zhang, Z.,
    4. Guo, J.,
    5. Tan, Z.,
    6. Zhu, Y.,
    7. Tao, J. and
    8. Ji, Y.-H.
    (2019). Understanding genotypes and phenotypes of the mutations in voltage- gated sodium channel α subunits in epilepsy. CNS Neurol. Disord. Drug Targets 18, 266-272. doi:10.2174/1871527317666181026164825
    OpenUrlCrossRef
  56. ↵
    1. Fisher, R. S.,
    2. Acevedo, C.,
    3. Arzimanoglou, A.,
    4. Bogacz, A.,
    5. Cross, J. H.,
    6. Elger, C. E.,
    7. Engel, J.,
    8. Forsgren, L.,
    9. French, J. A.,
    10. Glynn, M. et al.
    (2014). ILAE official report: a practical clinical definition of epilepsy. Epilepsia 55, 475-482. doi:10.1111/epi.12550
    OpenUrlCrossRefPubMedWeb of Science
  57. ↵
    1. Follwaczny, P.,
    2. Schieweck, R.,
    3. Riedemann, T.,
    4. Demleitner, A.,
    5. Straub, T.,
    6. Klemm, A. H.,
    7. Bilban, M.,
    8. Sutor, B.,
    9. Popper, B. and
    10. Kiebler, M. A.
    (2017). Pumilio2-deficient mice show a predisposition for epilepsy. Dis. Model. Mech. 10, 1333-1342. doi:10.1242/dmm.029678
    OpenUrlAbstract/FREE Full Text
  58. ↵
    1. Fontana, B. D.,
    2. Mezzomo, N. J.,
    3. Kalueff, A. V. and
    4. Rosemberg, D. B.
    (2018). The developing utility of zebrafish models of neurological and neuropsychiatric disorders: a critical review. Exp. Neurol. 299, 157-171. doi:10.1016/j.expneurol.2017.10.004
    OpenUrlCrossRef
  59. ↵
    1. Fujii, T.,
    2. Ito, Y.,
    3. Takahashi, S.,
    4. Shimono, K.,
    5. Natsume, J.,
    6. Yanagihara, K. and
    7. Oguni, H.
    (2016). Outcome of ketogenic diets in GLUT1 deficiency syndrome in Japan: A nationwide survey. Brain Dev. 38, 628-637. doi:10.1016/j.braindev.2016.01.002
    OpenUrlCrossRef
    1. Ganesh, S.,
    2. Delgado-Escueta, A. V.,
    3. Sakamoto, T.,
    4. Avila, M. R.,
    5. Machado-Salas, J.,
    6. Hoshii, Y.,
    7. Akagi, T.,
    8. Gomi, H.,
    9. Suzuki, T.,
    10. Amano, K. et al.
    (2002). Targeted disruption of the Epm2a gene causes formation of Lafora inclusion bodies, neurodegeneration, ataxia, myoclonus epilepsy and impaired behavioral response in mice. Hum. Mol. Genet. 11, 1251-1262. doi:10.1093/hmg/11.11.1251
    OpenUrlCrossRefPubMedWeb of Science
  60. ↵
    1. Garner, J. P.
    (2014). The significance of meaning: why do over 90% of behavioral neuroscience results fail to translate to humans, and what can we do to fix it? ILAR J. 55, 438-456. doi:10.1093/ilar/ilu047
    OpenUrlCrossRefPubMed
  61. ↵
    1. Gataullina, S.,
    2. Lemaire, E.,
    3. Wendling, F.,
    4. Kaminska, A.,
    5. Watrin, F.,
    6. Riquet, A.,
    7. Ville, D.,
    8. Moutard, M.-L.,
    9. de Saint Martin, A.,
    10. Napuri, S. et al.
    (2016). Epilepsy in young Tsc1(+/−) mice exhibits age-dependent expression that mimics that of human tuberous sclerosis complex. Epilepsia 57, 648-659. doi:10.1111/epi.13325
    OpenUrlCrossRef
    1. Gecz, J. and
    2. Thomas, P. Q.
    (2020). Disentangling the paradox of the PCDH19 clustering epilepsy, a disorder of cellular mosaics. Curr. Opin. Genet. Dev. 65, 169-175. doi:10.1016/j.gde.2020.06.012
    OpenUrlCrossRef
    1. Gonzalez-Sulser, A.
    (2020). Rodent genetic models of neurodevelopmental disorders and epilepsy. Eur. J. Paediatr. Neurol. 24, 66-69. doi:10.1016/j.ejpn.2019.12.012
    OpenUrlCrossRef
  62. ↵
    1. Goodman, M. B.,
    2. Lindsay, T. H.,
    3. Lockery, S. R. and
    4. Richmond, J. E.
    (2012). Electrophysiological methods for Caenorhabditis elegans neurobiology. Methods Cell Biol. 107, 409-436. doi:10.1016/B978-0-12-394620-1.00014-X
    OpenUrlCrossRefPubMed
  63. ↵
    1. Greenberg, D. A. and
    2. Subaran, R.
    (2011). Blinders, phenotype, and fashionable genetic analysis: a critical examination of the current state of epilepsy genetic studies. Epilepsia 52, 1-9. doi:10.1111/j.1528-1167.2010.02734.x
    OpenUrlCrossRef
  64. ↵
    1. Griffin, A.,
    2. Krasniak, C. and
    3. Baraban, S. C.
    (2016). Advancing epilepsy treatment through personalized genetic zebrafish models. Prog. Brain Res. 226, 195-207. doi:10.1016/bs.pbr.2016.03.012
    OpenUrlCrossRefPubMed
  65. ↵
    1. Gu, B. and
    2. Dalton, K. A.
    (2017). Models and detection of spontaneous recurrent seizures in laboratory rodents. Zool. Res. 38, 171-179. doi:10.24272/j.issn.2095-8137.2017.042
    OpenUrlCrossRef
  66. ↵
    1. Guan, Y.,
    2. Shao, Y.,
    3. Li, D. and
    4. Liu, M.
    (2014). Generation of site-specific mutations in the rat genome via CRISPR/Cas9. Meth. Enzymol. 546, 297-317. doi:10.1016/B978-0-12-801185-0.00014-3
    OpenUrlCrossRefPubMed
  67. ↵
    1. Gurumurthy, C. B. and
    2. Lloyd, K. C. K.
    (2019). Generating mouse models for biomedical research: technological advances. Dis. Model. Mech. 12, dmm029462. doi:10.1242/dmm.029462
    OpenUrlAbstract/FREE Full Text
    1. Guy, J.,
    2. Gan, J.,
    3. Selfridge, J.,
    4. Cobb, S. and
    5. Bird, A.
    (2007). Reversal of neurological defects in a mouse model of Rett syndrome. Science 315, 1143-1147. doi:10.1126/science.1138389
    OpenUrlAbstract/FREE Full Text
  68. ↵
    1. Halford, J. J.,
    2. Shiau, D.,
    3. Desrochers, J. A.,
    4. Kolls, B. J.,
    5. Dean, B. C.,
    6. Waters, C. G.,
    7. Azar, N. J.,
    8. Haas, K. F.,
    9. Kutluay, E.,
    10. Martz, G. U. et al.
    (2015). Inter-rater agreement on identification of electrographic seizures and periodic discharges in ICU EEG recordings. Clin. Neurophysiol. 126, 1661-1669. doi:10.1016/j.clinph.2014.11.008
    OpenUrlCrossRefPubMed
    1. Han, K.,
    2. Holder, J. L.,
    3. Schaaf, C. P.,
    4. Lu, H.,
    5. Chen, H.,
    6. Kang, H.,
    7. Tang, J.,
    8. Wu, Z.,
    9. Hao, S.,
    10. Cheung, S. W. et al.
    (2013). SHANK3 overexpression causes manic-like behaviour with unique pharmacogenetic properties. Nature 503, 72-77. doi:10.1038/nature12630
    OpenUrlCrossRefPubMedWeb of Science
  69. ↵
    1. Han, Z.,
    2. Chen, C.,
    3. Christiansen, A.,
    4. Ji, S.,
    5. Lin, Q.,
    6. Anumonwo, C.,
    7. Liu, C.,
    8. Leiser, S. C.,
    9. Meena,
    10. Aznarez, I. et al.
    (2020). Antisense oligonucleotides increase Scn1a expression and reduce seizures and SUDEP incidence in a mouse model of Dravet syndrome. Sci. Transl. Med. 12, eaaz6100. doi:10.1126/scitranslmed.aaz6100
    OpenUrlAbstract/FREE Full Text
  70. ↵
    1. Heilbronner, S. R.,
    2. Rodriguez-Romaguera, J.,
    3. Quirk, G. J.,
    4. Groenewegen, H. J. and
    5. Haber, S. N.
    (2016). Circuit-based corticostriatal homologies between rat and primate. Biol. Psychiatry 80, 509-521. doi:10.1016/j.biopsych.2016.05.012
    OpenUrlCrossRefPubMed
  71. ↵
    1. Helbig, I. and
    2. Ellis, C. A.
    (2020). Personalized medicine in genetic epilepsies - possibilities, challenges, and new frontiers. Neuropharmacology 172, 107970. doi:10.1016/j.neuropharm.2020.107970
    OpenUrlCrossRef
  72. ↵
    1. Hermiz, J.,
    2. Rogers, N.,
    3. Kaestner, E.,
    4. Ganji, M.,
    5. Cleary, D.,
    6. Snider, J.,
    7. Barba, D.,
    8. Dayeh, S.,
    9. Halgren, E.,
    10. Gilja, V. et al.
    (2016). A clinic compatible, open source electrophysiology system. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2016, 4511-4514. doi:10.1109/EMBC.2016.7591730
    OpenUrlCrossRef
  73. ↵
    1. Hildebrand, M. S.,
    2. Dahl, H.-H. M.,
    3. Damiano, J. A.,
    4. Smith, R. J. H.,
    5. Scheffer, I. E. and
    6. Berkovic, S. F.
    (2013). Recent advances in the molecular genetics of epilepsy. J. Med. Genet. 50, 271-279. doi:10.1136/jmedgenet-2012-101448
    OpenUrlAbstract/FREE Full Text
  74. ↵
    1. Hill, A. J.,
    2. Jones, N. A.,
    3. Williams, C. M.,
    4. Stephens, G. J. and
    5. Whalley, B. J.
    (2010). Development of multi-electrode array screening for anticonvulsants in acute rat brain slices. J. Neurosci. Methods 185, 246-256. doi:10.1016/j.jneumeth.2009.10.007
    OpenUrlCrossRefPubMedWeb of Science
  75. ↵
    1. Hodge, R. D.,
    2. Bakken, T. E.,
    3. Miller, J. A.,
    4. Smith, K. A.,
    5. Barkan, E. R.,
    6. Graybuck, L. T.,
    7. Close, J. L.,
    8. Long, B.,
    9. Johansen, N.,
    10. Penn, O. et al.
    (2019). Conserved cell types with divergent features in human versus mouse cortex. Nature 573, 61-68. doi:10.1038/s41586-019-1506-7
    OpenUrlCrossRefPubMed
  76. ↵
    1. Holmes, G. L. and
    2. Noebels, J. L.
    (2016). The epilepsy spectrum: targeting future research challenges. Cold Spring Harb. Perspect. Med. 6, a028043. doi:10.1101/cshperspect.a028043
    OpenUrlAbstract/FREE Full Text
  77. ↵
    1. Howe, K.,
    2. Clark, M. D.,
    3. Torroja, C. F.,
    4. Torrance, J.,
    5. Berthelot, C.,
    6. Muffato, M.,
    7. Collins, J. E.,
    8. Humphray, S.,
    9. McLaren, K.,
    10. Matthews, L. et al.
    (2013). The zebrafish reference genome sequence and its relationship to the human genome. Nature 496, 498-503. doi:10.1038/nature12111
    OpenUrlCrossRefPubMedWeb of Science
  78. ↵
    1. Huang, H.,
    2. Winter, E. E.,
    3. Wang, H.,
    4. Weinstock, K. G.,
    5. Xing, H.,
    6. Goodstadt, L.,
    7. Stenson, P. D.,
    8. Cooper, D. N.,
    9. Smith, D.,
    10. Albà, M. M. et al.
    (2004). Evolutionary conservation and selection of human disease gene orthologs in the rat and mouse genomes. Genome Biol. 5, R47. doi:10.1186/gb-2004-5-7-r47
    OpenUrlCrossRefPubMed
  79. ↵
    1. Ieraci, A.,
    2. Mallei, A. and
    3. Popoli, M.
    (2016). Social isolation stress induces anxious-depressive-like behavior and alterations of neuroplasticity-related genes in adult male mice. Neural Plast. 2016, 6212983. doi:10.1155/2016/6212983
    OpenUrlCrossRefPubMed
  80. ↵
    1. Izsak, J.,
    2. Seth, H.,
    3. Andersson, M.,
    4. Vizlin-Hodzic, D.,
    5. Theiss, S.,
    6. Hanse, E.,
    7. Ågren, H.,
    8. Funa, K. and
    9. Illes, S.
    (2019). Robust generation of person-specific, synchronously active neuronal networks using purely isogenic human iPSC-3D neural aggregate cultures. Front. Neurosci. 13, 351. doi:10.3389/fnins.2019.00351
    OpenUrlCrossRef
  81. ↵
    1. Jang, H.-J. and
    2. Cho, K.-O.
    (2019). Dual deep neural network-based classifiers to detect experimental seizures. Korean J. Physiol. Pharmacol. 23, 131-139. doi:10.4196/kjpp.2019.23.2.131
    OpenUrlCrossRef
  82. ↵
    1. Jankovic, M. J.,
    2. Kapadia, P. P. and
    3. Krishnan, V.
    (2019). Home-cage monitoring ascertains signatures of ictal and interictal behavior in mouse models of generalized seizures. PLoS ONE 14, e0224856. doi:10.1371/journal.pone.0224856
    OpenUrlCrossRef
  83. ↵
    1. Jarre, G.,
    2. Guillemain, I.,
    3. Deransart, C. and
    4. Depaulis, A.
    (2017). Genetic models of absence epilepsy in rats and mice. In Models of Seizures and Epilepsy (ed. A. Pitkänen, P. Buckmaster, A. Galanopoulou, S. Moshé), pp. 455-471. Elsevier.
    1. Jiang, Y. H.,
    2. Armstrong, D.,
    3. Albrecht, U.,
    4. Atkins, C. M.,
    5. Noebels, J. L.,
    6. Eichele, G.,
    7. Sweatt, J. D. and
    8. Beaudet, A. L.
    (1998). Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation. Neuron 21, 799-811. doi:10.1016/S0896-6273(00)80596-6
    OpenUrlCrossRefPubMedWeb of Science
  84. ↵
    1. Jiang, Z.,
    2. Huxter, J. R.,
    3. Bowyer, S. A.,
    4. Blockeel, A. J.,
    5. Butler, J.,
    6. Imtiaz, S. A.,
    7. Wafford, K. A.,
    8. Phillips, K. G.,
    9. Tricklebank, M. D.,
    10. Marston, H. M. et al.
    (2017). TaiNi: maximizing research output whilst improving animals’ welfare in neurophysiology experiments. Sci. Rep. 7, 8086. doi:10.1038/s41598-017-08078-8
    OpenUrlCrossRef
    1. Jin, C.,
    2. Zhang, Y.,
    3. Kim, S.,
    4. Kim, Y.,
    5. Lee, Y. and
    6. Han, K.
    (2018). Spontaneous seizure and partial lethality of juvenile Shank3-overexpressing mice in C57BL/6 J background. Mol. Brain 11, 57. doi:10.1186/s13041-018-0403-6
    OpenUrlCrossRef
    1. Judson, M. C.,
    2. Wallace, M. L.,
    3. Sidorov, M. S.,
    4. Burette, A. C.,
    5. Gu, B.,
    6. van Woerden, G. M.,
    7. King, I. F.,
    8. Han, J. E.,
    9. Zylka, M. J.,
    10. Elgersma, Y. et al.
    (2016). GABAergic neuron-specific loss of Ube3a causes Angelman syndrome-like EEG abnormalities and enhances seizure susceptibility. Neuron 90, 56-69. doi:10.1016/j.neuron.2016.02.040
    OpenUrlCrossRef
  85. ↵
    1. Kadam, S. D.,
    2. D'Ambrosio, R.,
    3. Duveau, V.,
    4. Roucard, C.,
    5. Garcia-Cairasco, N.,
    6. Ikeda, A.,
    7. de Curtis, M.,
    8. Galanopoulou, A. S. and
    9. Kelly, K. M.
    (2017). Methodological standards and interpretation of video-electroencephalography in adult control rodents. A TASK1-WG1 report of the AES/ILAE Translational Task Force of the ILAE. Epilepsia 58 Suppl. 4, 10-27. doi:10.1111/epi.13903
    OpenUrlCrossRefPubMed
  86. ↵
    1. Kaletta, T. and
    2. Hengartner, M. O.
    (2006). Finding function in novel targets: C. elegans as a model organism. Nat. Rev. Drug Discov. 5, 387-399. doi:10.1038/nrd2031
    OpenUrlCrossRefPubMedWeb of Science
  87. ↵
    1. Kandratavicius, L.,
    2. Balista, P. A.,
    3. Lopes-Aguiar, C.,
    4. Ruggiero, R. N.,
    5. Umeoka, E. H.,
    6. Garcia-Cairasco, N.,
    7. Bueno-Junior, L. S. and
    8. Leite, J. P.
    (2014). Animal models of epilepsy: use and limitations. Neuropsychiatr. Dis. Treat. 10, 1693-1705. doi:10.2147/NDT.S50371
    OpenUrlCrossRefPubMed
    1. Kang, J.-Q.,
    2. Shen, W.,
    3. Zhou, C.,
    4. Xu, D. and
    5. Macdonald, R. L.
    (2015). The human epilepsy mutation GABRG2(Q390X) causes chronic subunit accumulation and neurodegeneration. Nat. Neurosci. 18, 988-996. doi:10.1038/nn.4024
    OpenUrlCrossRefPubMed
  88. ↵
    1. Karler, R.,
    2. Murphy, V.,
    3. Calder, L. D. and
    4. Turkanis, S. A.
    (1989). Pentylenetetrazol kindling in mice. Neuropharmacology 28, 775-780. doi:10.1016/0028-3908(89)90166-4
    OpenUrlCrossRefPubMed
  89. ↵
    1. Kash, S. F.,
    2. Johnson, R. S.,
    3. Tecott, L. H.,
    4. Noebels, J. L.,
    5. Mayfield, R. D.,
    6. Hanahan, D. and
    7. Baekkeskov, S.
    (1997). Epilepsy in mice deficient in the 65-kDa isoform of glutamic acid decarboxylase. Proc. Natl. Acad. Sci. USA 94, 14060-14065. doi:10.1073/pnas.94.25.14060
    OpenUrlAbstract/FREE Full Text
  90. ↵
    1. Kerjan, G.,
    2. Koizumi, H.,
    3. Han, E. B.,
    4. Dubé, C. M.,
    5. Djakovic, S. N.,
    6. Patrick, G. N.,
    7. Baram, T. Z.,
    8. Heinemann, S. F. and
    9. Gleeson, J. G.
    (2009). Mice lacking doublecortin and doublecortin-like kinase 2 display altered hippocampal neuronal maturation and spontaneous seizures. Proc. Natl. Acad. Sci. USA 106, 6766-6771. doi:10.1073/pnas.0812687106
    OpenUrlAbstract/FREE Full Text
  91. ↵
    1. Kjeldsen, M. J.,
    2. Kyvik, K. O.,
    3. Christensen, K. and
    4. Friis, M. L.
    (2001). Genetic and environmental factors in epilepsy: a population-based study of 11 900 Danish twin pairs. Epilepsy Res. 44, 167-178. doi:10.1016/S0920-1211(01)00196-6
    OpenUrlCrossRefPubMedWeb of Science
    1. Klaassen, A.,
    2. Glykys, J.,
    3. Maguire, J.,
    4. Labarca, C.,
    5. Mody, I. and
    6. Boulter, J.
    (2006). Seizures and enhanced cortical GABAergic inhibition in two mouse models of human autosomal dominant nocturnal frontal lobe epilepsy. Proc. Natl. Acad. Sci. USA 103, 19152-19157. doi:10.1073/pnas.0608215103
    OpenUrlAbstract/FREE Full Text
  92. ↵
    1. Klein, S.,
    2. Bankstahl, M. and
    3. Löscher, W.
    (2015). Inter-individual variation in the effect of antiepileptic drugs in the intrahippocampal kainate model of mesial temporal lobe epilepsy in mice. Neuropharmacology 90, 53-62. doi:10.1016/j.neuropharm.2014.11.008
    OpenUrlCrossRefPubMed
  93. ↵
    1. Koeleman, B. P. C.
    (2018). What do genetic studies tell us about the heritable basis of common epilepsy? Polygenic or complex epilepsy? Neurosci. Lett. 667, 10-16. doi:10.1016/j.neulet.2017.03.042
    OpenUrlCrossRef
  94. ↵
    1. Kogut, I.,
    2. McCarthy, S. M.,
    3. Pavlova, M.,
    4. Astling, D. P.,
    5. Chen, X.,
    6. Jakimenko, A.,
    7. Jones, K. L.,
    8. Getahun, A.,
    9. Cambier, J. C.,
    10. Pasmooij, A. M. G. et al.
    (2018). High-efficiency RNA-based reprogramming of human primary fibroblasts. Nat. Commun. 9, 745. doi:10.1038/s41467-018-03190-3
    OpenUrlCrossRef
    1. Kovacevic, J.,
    2. Maroteaux, G.,
    3. Schut, D.,
    4. Loos, M.,
    5. Dubey, M.,
    6. Pitsch, J.,
    7. Remmelink, E.,
    8. Koopmans, B.,
    9. Crowley, J.,
    10. Cornelisse, L. N. et al.
    (2018). Protein instability, haploinsufficiency, and cortical hyper-excitability underlie STXBP1 encephalopathy. Brain 141, 1350-1374. doi:10.1093/brain/awy046
    OpenUrlCrossRef
  95. ↵
    1. Krackow, S.,
    2. Vannoni, E.,
    3. Codita, A.,
    4. Mohammed, A. H.,
    5. Cirulli, F.,
    6. Branchi, I.,
    7. Alleva, E.,
    8. Reichelt, A.,
    9. Willuweit, A.,
    10. Voikar, V. et al.
    (2010). Consistent behavioral phenotype differences between inbred mouse strains in the IntelliCage. Genes Brain Behav. 9, 722-731. doi:10.1111/j.1601-183X.2010.00606.x
    OpenUrlCrossRefPubMed
  96. ↵
    1. Kroll, J. R.,
    2. Wong, K. G.,
    3. Siddiqui, F. M. and
    4. Tanouye, M. A.
    (2015a). Disruption of endocytosis with the dynamin mutant shibirets1 suppresses seizures in Drosophila. Genetics 201, 1087-1102. doi:10.1534/genetics.115.177600
    OpenUrlAbstract/FREE Full Text
  97. ↵
    1. Kroll, J. R.,
    2. Saras, A. and
    3. Tanouye, M. A.
    (2015b). Drosophila sodium channel mutations: Contributions to seizure-susceptibility. Exp. Neurol. 274, 80-87. doi:10.1016/j.expneurol.2015.06.018
    OpenUrlCrossRef
  98. ↵
    1. Kuijlaars, J.,
    2. Oyelami, T.,
    3. Diels, A.,
    4. Rohrbacher, J.,
    5. Versweyveld, S.,
    6. Meneghello, G.,
    7. Tuefferd, M.,
    8. Verstraelen, P.,
    9. Detrez, J. R.,
    10. Verschuuren, M. et al.
    (2016). Sustained synchronized neuronal network activity in a human astrocyte co-culture system. Sci. Rep. 6, 36529. doi:10.1038/srep36529
    OpenUrlCrossRef
  99. ↵
    1. Kwan, P.,
    2. Arzimanoglou, A.,
    3. Berg, A. T.,
    4. Brodie, M. J.,
    5. Allen Hauser, W.,
    6. Mathern, G.,
    7. Moshé, S. L.,
    8. Perucca, E.,
    9. Wiebe, S. and
    10. French, J.
    (2010). Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia 51, 1069-1077. doi:10.1111/j.1528-1167.2009.02397.x
    OpenUrlCrossRefPubMedWeb of Science
  100. ↵
    1. Kyttälä, A.,
    2. Moraghebi, R.,
    3. Valensisi, C.,
    4. Kettunen, J.,
    5. Andrus, C.,
    6. Pasumarthy, K. K.,
    7. Nakanishi, M.,
    8. Nishimura, K.,
    9. Ohtaka, M.,
    10. Weltner, J. et al.
    (2016). Genetic variability overrides the impact of parental cell type and determines iPSC differentiation potential. Stem Cell Rep. 6, 200-212. doi:10.1016/j.stemcr.2015.12.009
    OpenUrlCrossRefPubMed
  101. ↵
    1. Lai, C. H.,
    2. Chou, C. Y.,
    3. Ch'ang, L. Y.,
    4. Liu, C. S. and
    5. Lin, W.
    (2000). Identification of novel human genes evolutionarily conserved in Caenorhabditis elegans by comparative proteomics. Genome Res. 10, 703-713. doi:10.1101/gr.10.5.703
    OpenUrlAbstract/FREE Full Text
  102. ↵
    1. Lam, W. W. K.,
    2. Millichap, J. J.,
    3. Soares, D. C.,
    4. Chin, R.,
    5. McLellan, A.,
    6. FitzPatrick, D. R.,
    7. Elmslie, F.,
    8. Lees, M. M.,
    9. Schaefer, G. B., DDD study et al.
    (2016). Novel de novo EEF1A2 missense mutations causing epilepsy and intellectual disability. Mol. Genet. Genomic Med. 4, 465-474. doi:10.1002/mgg3.219
    OpenUrlCrossRef
  103. ↵
    1. Lee, Y.,
    2. Seo, H. W.,
    3. Lee, K. J.,
    4. Jang, J.-W. and
    5. Kim, S.
    (2020). A microfluidic system for stable and continuous EEG monitoring from multiple larval zebrafish. Sensors (Basel) 20, 5903. doi:10.3390/s20205903
    OpenUrlCrossRef
  104. ↵
    1. Leech, C. K. and
    2. McIntyre, D. C.
    (1976). Kindling rates in inbred mice: an analog to learning? Behav. Biol. 16, 439-452. doi:10.1016/S0091-6773(76)91603-5
    OpenUrlCrossRefPubMed
  105. ↵
    1. Lévesque, M. and
    2. Avoli, M.
    (2013). The kainic acid model of temporal lobe epilepsy. Neurosci. Biobehav. Rev. 37, 2887-2899. doi:10.1016/j.neubiorev.2013.10.011
    OpenUrlCrossRefPubMed
  106. ↵
    1. Lidster, K.,
    2. Jefferys, J. G.,
    3. Blümcke, I.,
    4. Crunelli, V.,
    5. Flecknell, P.,
    6. Frenguelli, B. G.,
    7. Gray, W. P.,
    8. Kaminski, R.,
    9. Pitkänen, A.,
    10. Ragan, I. et al.
    (2016). Opportunities for improving animal welfare in rodent models of epilepsy and seizures. J. Neurosci. Methods 260, 2-25. doi:10.1016/j.jneumeth.2015.09.007
    OpenUrlCrossRefPubMed
  107. ↵
    1. Lieb, A.,
    2. Qiu, Y.,
    3. Dixon, C. L.,
    4. Heller, J. P.,
    5. Walker, M. C.,
    6. Schorge, S. and
    7. Kullmann, D. M.
    (2018). Biochemical autoregulatory gene therapy for focal epilepsy. Nat. Med. 24, 1324-1329. doi:10.1038/s41591-018-0103-x
    OpenUrlCrossRefPubMed
  108. ↵
    1. Liu, S.,
    2. Yu, W. and
    3. Lü, Y.
    (2016). The causes of new-onset epilepsy and seizures in the elderly. Neuropsychiatr. Dis. Treat. 12, 1425-1434. doi:10.2147/NDT.S107905
    OpenUrlCrossRef
  109. ↵
    1. Löscher, W.
    (2011). Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure 20, 359-368. doi:10.1016/j.seizure.2011.01.003
    OpenUrlCrossRefPubMedWeb of Science
  110. ↵
    1. Löscher, W.
    (2017). Animal models of seizures and epilepsy: past, present, and future role for the discovery of antiseizure drugs. Neurochem. Res. 42, 1873-1888. doi:10.1007/s11064-017-2222-z
    OpenUrlCrossRefPubMed
  111. ↵
    1. Lozovaya, N.,
    2. Gataullina, S.,
    3. Tsintsadze, T.,
    4. Tsintsadze, V.,
    5. Pallesi-Pocachard, E.,
    6. Minlebaev, M.,
    7. Goriounova, N. A.,
    8. Buhler, E.,
    9. Watrin, F.,
    10. Shityakov, S. et al.
    (2014). Selective suppression of excessive GluN2C expression rescues early epilepsy in a tuberous sclerosis murine model. Nat. Commun. 5, 4563. doi:10.1038/ncomms5563
    OpenUrlCrossRefPubMed
  112. ↵
    1. Lu, H.,
    2. Zou, Q.,
    3. Gu, H.,
    4. Raichle, M. E.,
    5. Stein, E. A. and
    6. Yang, Y.
    (2012). Rat brains also have a default mode network. Proc. Natl. Acad. Sci. USA 109, 3979-3984. doi:10.1073/pnas.1200506109
    OpenUrlAbstract/FREE Full Text
  113. ↵
    1. Lukkes, J. L.,
    2. Mokin, M. V.,
    3. Scholl, J. L. and
    4. Forster, G. L.
    (2009). Adult rats exposed to early-life social isolation exhibit increased anxiety and conditioned fear behavior, and altered hormonal stress responses. Horm. Behav. 55, 248-256. doi:10.1016/j.yhbeh.2008.10.014
    OpenUrlCrossRefPubMedWeb of Science
  114. ↵
    1. Malas, S.,
    2. Postlethwaite, M.,
    3. Ekonomou, A.,
    4. Whalley, B.,
    5. Nishiguchi, S.,
    6. Wood, H.,
    7. Meldrum, B.,
    8. Constanti, A. and
    9. Episkopou, V.
    (2003). Sox1-deficient mice suffer from epilepsy associated with abnormal ventral forebrain development and olfactory cortex hyperexcitability. Neuroscience 119, 421-432. doi:10.1016/S0306-4522(03)00158-1
    OpenUrlCrossRefPubMedWeb of Science
  115. ↵
    1. Manouze, H.,
    2. Ghestem, A.,
    3. Poillerat, V.,
    4. Bennis, M.,
    5. Ba-M'hamed, S.,
    6. Benoliel, J. J.,
    7. Becker, C. and
    8. Bernard, C.
    (2019). Effects of single cage housing on stress, cognitive, and seizure parameters in the rat and mouse pilocarpine models of epilepsy. Eneuro 6, ENEURO.0179-18.2019. doi:10.1523/ENEURO.0179-18.2019
    OpenUrlAbstract/FREE Full Text
    1. Martin, M. S.,
    2. Dutt, K.,
    3. Papale, L. A.,
    4. Dubé, C. M.,
    5. Dutton, S. B.,
    6. de Haan, G.,
    7. Shankar, A.,
    8. Tufik, S.,
    9. Meisler, M. H.,
    10. Baram, T. Z. et al.
    (2010). Altered function of the SCN1A voltage-gated sodium channel leads to gamma-aminobutyric acid-ergic (GABAergic) interneuron abnormalities. J. Biol. Chem. 285, 9823-9834. doi:10.1074/jbc.M109.078568
    OpenUrlAbstract/FREE Full Text
  116. ↵
    1. Matsumoto, K.,
    2. Nomura, H.,
    3. Murakami, Y.,
    4. Taki, K.,
    5. Takahata, H. and
    6. Watanabe, H.
    (2003). Long-term social isolation enhances picrotoxin seizure susceptibility in mice: up-regulatory role of endogenous brain allopregnanolone in GABAergic systems. Pharmacol. Biochem. Behav. 75, 831-835. doi:10.1016/S0091-3057(03)00169-2
    OpenUrlCrossRefPubMedWeb of Science
  117. ↵
    1. McColl, C. D.,
    2. Jacoby, A. S.,
    3. Shine, J.,
    4. Iismaa, T. P. and
    5. Bekkers, J. M.
    (2006). Galanin receptor-1 knockout mice exhibit spontaneous epilepsy, abnormal EEGs and altered inhibition in the hippocampus. Neuropharmacology 50, 209-218. doi:10.1016/j.neuropharm.2005.09.001
    OpenUrlCrossRefPubMed
  118. ↵
    1. McGuire, M. J.,
    2. Gertz, S. M.,
    3. McCutcheon, J. D.,
    4. Richardson, C. R. and
    5. Poulsen, D. J.
    (2019). Use of a wireless video-EEG system to monitor epileptiform discharges following lateral fluid-percussion induced traumatic brain injury. J. Vis. Exp. doi:10.3791/59637
    OpenUrlCrossRef
  119. ↵
    1. McTague, A.,
    2. Howell, K. B.,
    3. Cross, J. H.,
    4. Kurian, M. A. and
    5. Scheffer, I. E.
    (2016). The genetic landscape of the epileptic encephalopathies of infancy and childhood. Lancet Neurol. 15, 304-316. doi:10.1016/S1474-4422(15)00250-1
    OpenUrlCrossRefPubMed
  120. ↵
    1. Medlej, Y.,
    2. Asdikian, R.,
    3. Wadi, L.,
    4. Salah, H.,
    5. Dosh, L.,
    6. Hashash, R.,
    7. Karnib, N.,
    8. Medlej, M.,
    9. Darwish, H.,
    10. Kobeissy, F. et al.
    (2019). Enhanced setup for wired continuous long-term EEG monitoring in juvenile and adult rats: application for epilepsy and other disorders. BMC Neurosci. 20, 8. doi:10.1186/s12868-019-0490-z
    OpenUrlCrossRefPubMed
  121. ↵
    1. Meikle, L.,
    2. Talos, D. M.,
    3. Onda, H.,
    4. Pollizzi, K.,
    5. Rotenberg, A.,
    6. Sahin, M.,
    7. Jensen, F. E. and
    8. Kwiatkowski, D. J.
    (2007). A mouse model of tuberous sclerosis: neuronal loss of Tsc1 causes dysplastic and ectopic neurons, reduced myelination, seizure activity, and limited survival. J. Neurosci. 27, 5546-5558. doi:10.1523/JNEUROSCI.5540-06.2007
    OpenUrlAbstract/FREE Full Text
  122. ↵
    1. Meisler, M. H.
    (2019). SCN8A encephalopathy: mechanisms and models. Epilepsia 60 Suppl. 3, S86-S91. doi:10.1111/epi.14703
    OpenUrlCrossRef
  123. ↵
    1. Miller, L. L.,
    2. Pellock, J. M.,
    3. DeLorenzo, R. J.,
    4. Meyer, J. M. and
    5. Corey, L. A.
    (1998). Univariate genetic analyses of epilepsy and seizures in a population-based twin study: the Virginia twin registry. Genet. Epidemiol. 15, 33-49. doi:10.1002/(SICI)1098-2272(1998)15:1<33::AID-GEPI3>3.0.CO;2-5
    OpenUrlCrossRefPubMedWeb of Science
  124. ↵
    1. Mirza, N.,
    2. Appleton, R.,
    3. Burn, S.,
    4. du Plessis, D.,
    5. Duncan, R.,
    6. Farah, J. O.,
    7. Feenstra, B.,
    8. Hviid, A.,
    9. Josan, V.,
    10. Mohanraj, R. et al.
    (2017). Genetic regulation of gene expression in the epileptic human hippocampus. Hum. Mol. Genet. 26, 1759-1769. doi:10.1093/hmg/ddx061
    OpenUrlCrossRef
    1. Miyamoto, H.,
    2. Tatsukawa, T.,
    3. Shimohata, A.,
    4. Yamagata, T.,
    5. Suzuki, T.,
    6. Amano, K.,
    7. Mazaki, E.,
    8. Raveau, M.,
    9. Ogiwara, I.,
    10. Oba-Asaka, A. et al.
    (2019). Impaired cortico-striatal excitatory transmission triggers epilepsy. Nat. Commun. 10, 1917. doi:10.1038/s41467-019-09954-9
    OpenUrlCrossRef
  125. ↵
    1. Moore, B. M.,
    2. Jerry Jou, C.,
    3. Tatalovic, M.,
    4. Kaufman, E. S.,
    5. Kline, D. D. and
    6. Kunze, D. L.
    (2014). The Kv1.1 null mouse, a model of sudden unexpected death in epilepsy (SUDEP). Epilepsia 55, 1808-1816. doi:10.1111/epi.12793
    OpenUrlCrossRef
  126. ↵
    Mouse Genome Sequencing Consortium, Waterston, R. H., Lindblad-Toh, K., Birney, E., Rogers, J., Abril, J. F., Agarwal, P., Agarwala, R., Ainscough, R., Alexandersson, M. et al. (2002). Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520-562. doi:10.1038/nature01262
    OpenUrlCrossRefPubMedWeb of Science
  127. ↵
    1. Moyer, J. T.,
    2. Gnatkovsky, V.,
    3. Ono, T.,
    4. Otáhal, J.,
    5. Wagenaar, J.,
    6. Stacey, W. C.,
    7. Noebels, J.,
    8. Ikeda, A.,
    9. Staley, K.,
    10. de Curtis, M. et al.
    (2017). Standards for data acquisition and software-based analysis of in vivo electroencephalography recordings from animals. A TASK1-WG5 report of the AES/ILAE Translational Task Force of the ILAE. Epilepsia 58 Suppl. 4, 53-67. doi:10.1111/epi.13909
    OpenUrlCrossRef
  128. ↵
    1. Mulcahey, P. J.,
    2. Tang, S.,
    3. Takano, H.,
    4. White, A.,
    5. Davila Portillo, D. R.,
    6. Kane, O. M.,
    7. Marsh, E. D.,
    8. Zhou, Z. and
    9. Coulter, D. A.
    (2020). Aged heterozygous Cdkl5 mutant mice exhibit spontaneous epileptic spasms. Exp. Neurol. 332, 113388. doi:10.1016/j.expneurol.2020.113388
    OpenUrlCrossRef
  129. ↵
    1. Musumeci, S. A.,
    2. Bosco, P.,
    3. Calabrese, G.,
    4. Bakker, C.,
    5. De Sarro, G. B.,
    6. Elia, M.,
    7. Ferri, R. and
    8. Oostra, B. A.
    (2000). Audiogenic seizures susceptibility in transgenic mice with fragile X syndrome. Epilepsia 41, 19-23. doi:10.1111/j.1528-1157.2000.tb01499.x
    OpenUrlCrossRefPubMedWeb of Science
  130. ↵
    1. Nicholas, C. R.,
    2. Chen, J.,
    3. Tang, Y.,
    4. Southwell, D. G.,
    5. Chalmers, N.,
    6. Vogt, D.,
    7. Arnold, C. M.,
    8. Chen, Y.-J. J.,
    9. Stanley, E. G.,
    10. Elefanty, A. G. et al.
    (2013). Functional maturation of hPSC-derived forebrain interneurons requires an extended timeline and mimics human neural development. Cell Stem Cell 12, 573-586. doi:10.1016/j.stem.2013.04.005
    OpenUrlCrossRefPubMedWeb of Science
  131. ↵
    1. Niibori, Y.,
    2. Lee, S. J.,
    3. Minassian, B. A. and
    4. Hampson, D. R.
    (2020). Sexually divergent mortality and partial phenotypic rescue after gene therapy in a mouse model of dravet syndrome. Hum. Gene Ther. 31, 339-351. doi:10.1089/hum.2019.225
    OpenUrlCrossRef
  132. ↵
    1. Obien, M. E. J.,
    2. Deligkaris, K.,
    3. Bullmann, T.,
    4. Bakkum, D. J. and
    5. Frey, U.
    (2014). Revealing neuronal function through microelectrode array recordings. Front. Neurosci. 8, 423. doi:10.3389/fnins.2014.00423
    OpenUrlCrossRefPubMed
    1. Ogiwara, I.,
    2. Miyamoto, H.,
    3. Morita, N.,
    4. Atapour, N.,
    5. Mazaki, E.,
    6. Inoue, I.,
    7. Takeuchi, T.,
    8. Itohara, S.,
    9. Yanagawa, Y.,
    10. Obata, K. et al.
    (2007). Nav1.1 localizes to axons of parvalbumin-positive inhibitory interneurons: a circuit basis for epileptic seizures in mice carrying an Scn1a gene mutation. J. Neurosci. 27, 5903-5914. doi:10.1523/JNEUROSCI.5270-06.2007
    OpenUrlAbstract/FREE Full Text
  133. ↵
    1. Ohmori, I.,
    2. Kobayashi, K. and
    3. Ouchida, M.
    (2020). Scn1a and Cacna1a mutations mutually alter their original phenotypes in rats. Neurochem. Int. 141, 104859. doi:10.1016/j.neuint.2020.104859
    OpenUrlCrossRef
  134. ↵
    1. Okuda, K.,
    2. Kobayashi, S.,
    3. Fukaya, M.,
    4. Watanabe, A.,
    5. Murakami, T.,
    6. Hagiwara, M.,
    7. Sato, T.,
    8. Ueno, H.,
    9. Ogonuki, N.,
    10. Komano-Inoue, S. et al.
    (2017). CDKL5 controls postsynaptic localization of GluN2B-containing NMDA receptors in the hippocampus and regulates seizure susceptibility. Neurobiol. Dis. 106, 158-170. doi:10.1016/j.nbd.2017.07.002
    OpenUrlCrossRefPubMed
    1. O'Malley, H. A.,
    2. Hull, J. M.,
    3. Clawson, B. C.,
    4. Chen, C.,
    5. Owens-Fiestan, G.,
    6. Jameson, M. B.,
    7. Aton, S. J.,
    8. Parent, J. M. and
    9. Isom, L. L.
    (2019). Scn1b deletion in adult mice results in seizures and SUDEP. Ann Clin Transl Neurol 6, 1121-1126. doi:10.1002/acn3.785
    OpenUrlCrossRef
    1. Otto, J. F.,
    2. Singh, N. A.,
    3. Dahle, E. J.,
    4. Leppert, M. F.,
    5. Pappas, C. M.,
    6. Pruess, T. H.,
    7. Wilcox, K. S. and
    8. White, H. S.
    (2009). Electroconvulsive seizure thresholds and kindling acquisition rates are altered in mouse models of human KCNQ2 and KCNQ3 mutations for benign familial neonatal convulsions. Epilepsia 50, 1752-1759. doi:10.1111/j.1528-1167.2009.02100.x
    OpenUrlCrossRefPubMed
    1. Ozkan, E. D.,
    2. Creson, T. K.,
    3. Kramár, E. A.,
    4. Rojas, C.,
    5. Seese, R. R.,
    6. Babyan, A. H.,
    7. Shi, Y.,
    8. Lucero, R.,
    9. Xu, X.,
    10. Noebels, J. L. et al.
    (2014). Reduced cognition in Syngap1 mutants is caused by isolated damage within developing forebrain excitatory neurons. Neuron 82, 1317-1333. doi:10.1016/j.neuron.2014.05.015
    OpenUrlCrossRefPubMed
  135. ↵
    1. Pacey, L. K. K.,
    2. Heximer, S. P. and
    3. Hampson, D. R.
    (2009). Increased GABA(B) receptor-mediated signaling reduces the susceptibility of fragile X knockout mice to audiogenic seizures. Mol. Pharmacol. 76, 18-24. doi:10.1124/mol.109.056127
    OpenUrlAbstract/FREE Full Text
  136. ↵
    1. Pandey, U. B. and
    2. Nichols, C. D.
    (2011). Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol. Rev. 63, 411-436. doi:10.1124/pr.110.003293
    OpenUrlAbstract/FREE Full Text
  137. ↵
    1. Pandey, R.,
    2. Gupta, S.,
    3. Tandon, S.,
    4. Wolkenhauer, O.,
    5. Vera, J. and
    6. Gupta, S. K.
    (2010). Baccoside A suppresses epileptic-like seizure/convulsion in Caenorhabditis elegans. Seizure 19, 439-442. doi:10.1016/j.seizure.2010.06.005
    OpenUrlCrossRefPubMed
    1. Papale, L. A.,
    2. Beyer, B.,
    3. Jones, J. M.,
    4. Sharkey, L. M.,
    5. Tufik, S.,
    6. Epstein, M.,
    7. Letts, V. A.,
    8. Meisler, M. H.,
    9. Frankel, W. N. and
    10. Escayg, A.
    (2009). Heterozygous mutations of the voltage-gated sodium channel SCN8A are associated with spike-wave discharges and absence epilepsy in mice. Hum. Mol. Genet. 18, 1633-1641. doi:10.1093/hmg/ddp081
    OpenUrlCrossRefPubMedWeb of Science
  138. ↵
    1. Park, I.,
    2. Lee, K.,
    3. Bishayee, K.,
    4. Jeon, H. J.,
    5. Lee, H. and
    6. Lee, U.
    (2019). Machine-learning based automatic and real-time detection of mouse scratching behaviors. Exp. Neurobiol. 28, 54-61. doi:10.5607/en.2019.28.1.54
    OpenUrlCrossRef
  139. ↵
    1. Parker, L.,
    2. Howlett, I. C.,
    3. Rusan, Z. M. and
    4. Tanouye, M. A.
    (2011a). Seizure and epilepsy: studies of seizure disorders in Drosophila. Int. Rev. Neurobiol. 99, 1-21. doi:10.1016/B978-0-12-387003-2.00001-X
    OpenUrlCrossRefPubMed
  140. ↵
    1. Parker, L.,
    2. Padilla, M.,
    3. Du, Y.,
    4. Dong, K. and
    5. Tanouye, M. A.
    (2011b). Drosophila as a model for epilepsy: bss is a gain-of-function mutation in the para sodium channel gene that leads to seizures. Genetics 187, 523-534. doi:10.1534/genetics.110.123299
    OpenUrlAbstract/FREE Full Text
    1. Patino, G. A.,
    2. Claes, L. R. F.,
    3. Lopez-Santiago, L. F.,
    4. Slat, E. A.,
    5. Dondeti, R. S. R.,
    6. Chen, C.,
    7. O'Malley, H. A.,
    8. Gray, C. B. B.,
    9. Miyazaki, H.,
    10. Nukina, N. et al.
    (2009). A functional null mutation of SCN1B in a patient with Dravet syndrome. J. Neurosci. 29, 10764-10778. doi:10.1523/JNEUROSCI.2475-09.2009
    OpenUrlAbstract/FREE Full Text
  141. ↵
    1. Peleh, T.,
    2. Bai, X.,
    3. Kas, M. J. H. and
    4. Hengerer, B.
    (2019). RFID-supported video tracking for automated analysis of social behaviour in groups of mice. J. Neurosci. Methods 325, 108323. doi:10.1016/j.jneumeth.2019.108323
    OpenUrlCrossRef
    1. Peñagarikano, O.,
    2. Abrahams, B. S.,
    3. Herman, E. I.,
    4. Winden, K. D.,
    5. Gdalyahu, A.,
    6. Dong, H.,
    7. Sonnenblick, L. I.,
    8. Gruver, R.,
    9. Almajano, J.,
    10. Bragin, A. et al.
    (2011). Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell 147, 235-246. doi:10.1016/j.cell.2011.08.040
    OpenUrlCrossRefPubMedWeb of Science
  142. ↵
    1. Pfammatter, J. A.,
    2. Maganti, R. K. and
    3. Jones, M. V.
    (2019). An automated, machine learning-based detection algorithm for spike-wave discharges (SWDs) in a mouse model of absence epilepsy. Epilepsia Open 4, 110-122. doi:10.1002/epi4.12303
    OpenUrlCrossRef
  143. ↵
    1. Pitkänen, A.,
    2. Nehlig, A.,
    3. Brooks-Kayal, A. R.,
    4. Dudek, F. E.,
    5. Friedman, D.,
    6. Galanopoulou, A. S.,
    7. Jensen, F. E.,
    8. Kaminski, R. M.,
    9. Kapur, J.,
    10. Klitgaard, H. et al.
    (2013). Issues related to development of antiepileptogenic therapies. Epilepsia 54 Suppl. 4, 35-43. doi:10.1111/epi.12297
    OpenUrlCrossRef
  144. ↵
    1. Prè, D.,
    2. Nestor, M. W.,
    3. Sproul, A. A.,
    4. Jacob, S.,
    5. Koppensteiner, P.,
    6. Chinchalongporn, V.,
    7. Zimmer, M.,
    8. Yamamoto, A.,
    9. Noggle, S. A. and
    10. Arancio, O.
    (2014). A time course analysis of the electrophysiological properties of neurons differentiated from human induced pluripotent stem cells (iPSCs). PLoS ONE 9, e103418. doi:10.1371/journal.pone.0103418
    OpenUrlCrossRefPubMed
  145. ↵
    1. Qaiser, F.,
    2. Yuen, R. K. C. and
    3. Andrade, D. M.
    (2020). Genetics of epileptic networks: from focal to generalized genetic epilepsies. Curr. Neurol. Neurosci. Rep. 20, 46. doi:10.1007/s11910-020-01059-x
    OpenUrlCrossRef
    1. Qu, S.,
    2. Catron, M.,
    3. Zhou, C.,
    4. Janve, V.,
    5. Shen, W.,
    6. Howe, R. K. and
    7. Macdonald, R. L.
    (2020). GABAA receptor β3 subunit mutation D120N causes Lennox-Gastaut syndrome in knock-in mice. Brain Commun. 2, fcaa028. doi:10.1093/braincomms/fcaa028
    OpenUrlCrossRef
  146. ↵
    1. Quraishi, I. H.,
    2. Mercier, M. R.,
    3. McClure, H.,
    4. Couture, R. L.,
    5. Schwartz, M. L.,
    6. Lukowski, R.,
    7. Ruth, P. and
    8. Kaczmarek, L. K.
    (2020). Impaired motor skill learning and altered seizure susceptibility in mice with loss or gain of function of the Kcnt1 gene encoding Slack (KNa1.1) Na+-activated K+ channels. Sci. Rep. 10, 3213. doi:10.1038/s41598-020-60028-z
    OpenUrlCrossRef
  147. ↵
    1. Racine, R. J.
    (1972). Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr. Clin. Neurophysiol. 32, 281-294. doi:10.1016/0013-4694(72)90177-0
    OpenUrlCrossRefPubMedWeb of Science
  148. ↵
    1. Radlicz, C.,
    2. Chambers, A.,
    3. Olis, E. and
    4. Kuebler, D.
    (2019). The addition of a lipid-rich dietary supplement eliminates seizure-like activity and paralysis in the drosophila bang sensitive mutants. Epilepsy Res. 155, 106153. doi:10.1016/j.eplepsyres.2019.106153
    OpenUrlCrossRef
  149. ↵
    1. Ramos-Lizana, J.,
    2. Rodriguez-Lucenilla, M. I.,
    3. Aguilera-López, P.,
    4. Aguirre-Rodríguez, J. and
    5. Cassinello-García, E.
    (2012). A study of drug-resistant childhood epilepsy testing the new ILAE criteria. Seizure 21, 266-272. doi:10.1016/j.seizure.2012.01.009
    OpenUrlCrossRefPubMed
  150. ↵
    1. Reynolds, E. R.,
    2. Stauffer, E. A.,
    3. Feeney, L.,
    4. Rojahn, E.,
    5. Jacobs, B. and
    6. McKeever, C.
    (2004). Treatment with the antiepileptic drugs phenytoin and gabapentin ameliorates seizure and paralysis of Drosophila bang-sensitive mutants. J. Neurobiol. 58, 503-513. doi:10.1002/neu.10297
    OpenUrlCrossRefPubMedWeb of Science
  151. ↵
    1. Riban, V.,
    2. Bouilleret, V.,
    3. Pham-Lê, B. T.,
    4. Fritschy, J. M.,
    5. Marescaux, C. and
    6. Depaulis, A.
    (2002). Evolution of hippocampal epileptic activity during the development of hippocampal sclerosis in a mouse model of temporal lobe epilepsy. Neuroscience 112, 101-111. doi:10.1016/S0306-4522(02)00064-7
    OpenUrlCrossRefPubMedWeb of Science
  152. ↵
    1. Risley, M. G.,
    2. Kelly, S. P.,
    3. Jia, K.,
    4. Grill, B. and
    5. Dawson-Scully, K.
    (2016). Modulating behavior in C. elegans using electroshock and antiepileptic drugs. PLoS ONE 11, e0163786. doi:10.1371/journal.pone.0163786
    OpenUrlCrossRef
    1. Rotaru, D. C.,
    2. Mientjes, E. J. and
    3. Elgersma, Y.
    (2020). Angelman syndrome: from mouse models to therapy. Neuroscience 445, 172-189. doi:10.1016/j.neuroscience.2020.02.017
    OpenUrlCrossRef
    1. Sah, M.,
    2. Shore, A. N.,
    3. Petri, S.,
    4. Kanber, A.,
    5. Yang, M.,
    6. Weston, M. C. and
    7. Frankel, W. N.
    (2020). Altered excitatory transmission onto hippocampal interneurons in the IQSEC2 mouse model of X-linked neurodevelopmental disease. Neurobiol. Dis. 137, 104758. doi:10.1016/j.nbd.2020.104758
    OpenUrlCrossRef
  153. ↵
    1. Saras, A. and
    2. Tanouye, M. A.
    (2016). Mutations of the calcium channel gene cacophony suppress seizures in Drosophila. PLoS Genet. 12, e1005784. doi:10.1371/journal.pgen.1005784
    OpenUrlCrossRefPubMed
  154. ↵
    1. Schmidt, J.
    (1987). Changes in seizure susceptibility in rats following chronic administration of pentylenetetrazol. Biomed. Biochim. Acta 46, 267-270.
    OpenUrlPubMed
  155. ↵
    1. Seidner, G.,
    2. Alvarez, M. G.,
    3. Yeh, J. I.,
    4. O'Driscoll, K. R.,
    5. Klepper, J.,
    6. Stump, T. S.,
    7. Wang, D.,
    8. Spinner, N. B.,
    9. Birnbaum, M. J. and
    10. De Vivo, D. C.
    (1998). GLUT-1 deficiency syndrome caused by haploinsufficiency of the blood-brain barrier hexose carrier. Nat. Genet. 18, 188-191. doi:10.1038/ng0298-188
    OpenUrlCrossRefPubMedWeb of Science
  156. ↵
    1. Siegle, J. H.,
    2. López, A. C.,
    3. Patel, Y. A.,
    4. Abramov, K.,
    5. Ohayon, S. and
    6. Voigts, J.
    (2017). Open Ephys: an open-source, plugin-based platform for multichannel electrophysiology. J. Neural Eng. 14, 045003. doi:10.1088/1741-2552/aa5eea
    OpenUrlCrossRef
    1. Siehr, M. S.,
    2. Massey, C. A. and
    3. Noebels, J. L.
    (2020). Arx expansion mutation perturbs cortical development by augmenting apoptosis without activating innate immunity in a mouse model of X-linked infantile spasms syndrome. Dis. Model. Mech. 13, dmm042515. doi:10.1242/dmm.042515
    OpenUrlAbstract/FREE Full Text
  157. ↵
    1. Singh, N. A.,
    2. Otto, J. F.,
    3. Dahle, E. J.,
    4. Pappas, C.,
    5. Leslie, J. D.,
    6. Vilaythong, A.,
    7. Noebels, J. L.,
    8. White, H. S.,
    9. Wilcox, K. S. and
    10. Leppert, M. F.
    (2008). Mouse models of human KCNQ2 and KCNQ3 mutations for benign familial neonatal convulsions show seizures and neuronal plasticity without synaptic reorganization. J. Physiol. (Lond.) 586, 3405-3423. doi:10.1113/jphysiol.2008.154971
    OpenUrlCrossRefPubMed
  158. ↵
    1. Sirven, J. I.
    (2015). Epilepsy: a spectrum disorder. Cold Spring Harb. Perspect. Med. 5, a022848. doi:10.1101/cshperspect.a022848
    OpenUrlAbstract/FREE Full Text
  159. ↵
    1. Stawicki, T. M.,
    2. Takayanagi-Kiya, S.,
    3. Zhou, K. and
    4. Jin, Y.
    (2013). Neuropeptides function in a homeostatic manner to modulate excitation-inhibition imbalance in C. elegans. PLoS Genet. 9, e1003472. doi:10.1371/journal.pgen.1003472
    OpenUrlCrossRefPubMed
  160. ↵
    1. Strand, A. D.,
    2. Aragaki, A. K.,
    3. Baquet, Z. C.,
    4. Hodges, A.,
    5. Cunningham, P.,
    6. Holmans, P.,
    7. Jones, K. R.,
    8. Jones, L.,
    9. Kooperberg, C. and
    10. Olson, J. M.
    (2007). Conservation of regional gene expression in mouse and human brain. PLoS Genet. 3, e59. doi:10.1371/journal.pgen.0030059
    OpenUrlCrossRefPubMed
  161. ↵
    1. Strohl, K. P.,
    2. Gallaugher, L.,
    3. Lynn, A.,
    4. Friedman, L.,
    5. Hill, A.,
    6. Singer, J. B.,
    7. Lander, E. S. and
    8. Nadeau, J.
    (2007). Sleep-related epilepsy in the A/J mouse. Sleep 30, 169-176. doi:10.1093/sleep/30.2.169
    OpenUrlCrossRefPubMedWeb of Science
  162. ↵
    1. Sturman, O.,
    2. von Ziegler, L.,
    3. Schläppi, C.,
    4. Akyol, F.,
    5. Privitera, M.,
    6. Slominski, D.,
    7. Grimm, C.,
    8. Thieren, L.,
    9. Zerbi, V.,
    10. Grewe, B. et al.
    (2020). Deep learning-based behavioral analysis reaches human accuracy and is capable of outperforming commercial solutions. Neuropsychopharmacology 45, 1942-1952. doi:10.1038/s41386-020-0776-y
    OpenUrlCrossRef
  163. ↵
    1. Takahashi, K.,
    2. Tanabe, K.,
    3. Ohnuki, M.,
    4. Narita, M.,
    5. Ichisaka, T.,
    6. Tomoda, K. and
    7. Yamanaka, S.
    (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861-872. doi:10.1016/j.cell.2007.11.019
    OpenUrlCrossRefPubMedWeb of Science
  164. ↵
    1. Tan, H. O.,
    2. Reid, C. A.,
    3. Single, F. N.,
    4. Davies, P. J.,
    5. Chiu, C.,
    6. Murphy, S.,
    7. Clarke, A. L.,
    8. Dibbens, L.,
    9. Krestel, H.,
    10. Mulley, J. C. et al.
    (2007). Reduced cortical inhibition in a mouse model of familial childhood absence epilepsy. Proc. Natl. Acad. Sci. USA 104, 17536-17541. doi:10.1073/pnas.0708440104
    OpenUrlAbstract/FREE Full Text
  165. ↵
    1. Téllez-Zenteno, J. F.,
    2. Hernández-Ronquillo, L.,
    3. Buckley, S.,
    4. Zahagun, R. and
    5. Rizvi, S.
    (2014). A validation of the new definition of drug-resistant epilepsy by the International League Against Epilepsy. Epilepsia 55, 829-834. doi:10.1111/epi.12633
    OpenUrlCrossRefPubMed
    1. Teoh, J.,
    2. Subramanian, N.,
    3. Pero, M. E.,
    4. Bartolini, F.,
    5. Amador, A.,
    6. Kanber, A.,
    7. Williams, D.,
    8. Petri, S.,
    9. Yang, M.,
    10. Allen, A. S. et al.
    (2020). Arfgef1 haploinsufficiency in mice alters neuronal endosome composition and decreases membrane surface postsynaptic GABAA receptors. Neurobiol. Dis. 134, 104632. doi:10.1016/j.nbd.2019.104632
    OpenUrlCrossRef
  166. ↵
    1. Tidball, A. M. and
    2. Parent, J. M.
    (2016). Concise review: exciting cells: modeling genetic epilepsies with patient-derived induced pluripotent stem cells. Stem Cells 34, 27-33. doi:10.1002/stem.2203
    OpenUrlCrossRefPubMed
  167. ↵
    1. Tieng, Q. M.,
    2. Kharatishvili, I.,
    3. Chen, M. and
    4. Reutens, D. C.
    (2016). Mouse EEG spike detection based on the adapted continuous wavelet transform. J. Neural Eng. 13, 026018. doi:10.1088/1741-2560/13/2/026018
    OpenUrlCrossRef
  168. ↵
    1. Tieng, Q. M.,
    2. Anbazhagan, A.,
    3. Chen, M. and
    4. Reutens, D. C.
    (2017). Mouse epileptic seizure detection with multiple EEG features and simple thresholding technique. J. Neural Eng. 14, 066006. doi:10.1088/1741-2552/aa8069
    OpenUrlCrossRef
  169. ↵
    1. Toman, J. E. P.,
    2. Swinyard, E. A. and
    3. Goodman, L. S.
    (1946). Properties of maximal seizures, and their alteration by anticonvulsant drugs and other agents. J. Neurophysiol. 9, 231-239. doi:10.1152/jn.1946.9.3.231
    OpenUrlCrossRefPubMedWeb of Science
  170. ↵
    1. Trujillo, C. A.,
    2. Gao, R.,
    3. Negraes, P. D.,
    4. Gu, J.,
    5. Buchanan, J.,
    6. Preissl, S.,
    7. Wang, A.,
    8. Wu, W.,
    9. Haddad, G. G.,
    10. Chaim, I. A. et al.
    (2019). Complex oscillatory waves emerging from cortical organoids model early human brain network development. Cell Stem Cell 25, 558-569.e7. doi:10.1016/j.stem.2019.08.002
    OpenUrlCrossRefPubMed
  171. ↵
    1. Ugur, B.,
    2. Chen, K. and
    3. Bellen, H. J.
    (2016). Drosophila tools and assays for the study of human diseases. Dis. Model. Mech. 9, 235-244. doi:10.1242/dmm.023762
    OpenUrlAbstract/FREE Full Text
    1. Vicini, S.,
    2. Ferguson, C.,
    3. Prybylowski, K.,
    4. Kralic, J.,
    5. Morrow, A. L. and
    6. Homanics, G. E.
    (2001). GABA(A) receptor α1 subunit deletion prevents developmental changes of inhibitory synaptic currents in cerebellar neurons. J. Neurosci. 21, 3009-3016. doi:10.1523/JNEUROSCI.21-09-03009.2001
    OpenUrlAbstract/FREE Full Text
  172. ↵
    1. Wagnon, J. L.,
    2. Korn, M. J.,
    3. Parent, R.,
    4. Tarpey, T. A.,
    5. Jones, J. M.,
    6. Hammer, M. F.,
    7. Murphy, G. G.,
    8. Parent, J. M. and
    9. Meisler, M. H.
    (2015). Convulsive seizures and SUDEP in a mouse model of SCN8A epileptic encephalopathy. Hum. Mol. Genet. 24, 506-515. doi:10.1093/hmg/ddu470
    OpenUrlCrossRefPubMed
    1. Warner, T. A.,
    2. Shen, W.,
    3. Huang, X.,
    4. Liu, Z.,
    5. Macdonald, R. L. and
    6. Kang, J.-Q.
    (2016). Differential molecular and behavioural alterations in mouse models of GABRG2 haploinsufficiency versus dominant negative mutations associated with human epilepsy. Hum. Mol. Genet. 25, 3192-3207. doi:10.1093/hmg/ddw168
    OpenUrlCrossRefPubMed
  173. ↵
    1. Wasilczuk, A. Z.,
    2. Proekt, A.,
    3. Kelz, M. B. and
    4. McKinstry-Wu, A. R.
    (2016). High-density electroencephalographic acquisition in a rodent model using low-cost and open-source resources. J. Vis. Exp. doi:10.3791/54908
    OpenUrlCrossRef
  174. ↵
    1. Weintraub, A.,
    2. Singaravelu, J. and
    3. Bhatnagar, S.
    (2010). Enduring and sex-specific effects of adolescent social isolation in rats on adult stress reactivity. Brain Res. 1343, 83-92. doi:10.1016/j.brainres.2010.04.068
    OpenUrlCrossRefPubMedWeb of Science
  175. ↵
    1. Wiegand, C. and
    2. Banerjee, I.
    (2019). Recent advances in the applications of iPSC technology. Curr. Opin. Biotechnol. 60, 250-258. doi:10.1016/j.copbio.2019.05.011
    OpenUrlCrossRef
  176. ↵
    1. Williams, S. N.,
    2. Locke, C. J.,
    3. Braden, A. L.,
    4. Caldwell, K. A. and
    5. Caldwell, G. A.
    (2004). Epileptic-like convulsions associated with LIS-1 in the cytoskeletal control of neurotransmitter signaling in Caenorhabditis elegans. Hum. Mol. Genet. 13, 2043-2059. doi:10.1093/hmg/ddh209
    OpenUrlCrossRefPubMedWeb of Science
  177. ↵
    1. Willner, P.
    (1984). The validity of animal models of depression. Psychopharmacology 83, 1-16. doi:10.1007/BF00427414
    OpenUrlCrossRefPubMed
  178. ↵
    1. Wirrell, E. C.,
    2. Grossardt, B. R.,
    3. Wong-Kisiel, L. C. L. and
    4. Nickels, K. C.
    (2011). Incidence and classification of new-onset epilepsy and epilepsy syndromes in children in Olmsted County, Minnesota from 1980 to 2004: a population-based study. Epilepsy Res. 95, 110-118. doi:10.1016/j.eplepsyres.2011.03.009
    OpenUrlCrossRefPubMedWeb of Science
  179. ↵
    1. Wolff, M.,
    2. Johannesen, K. M.,
    3. Hedrich, U. B. S.,
    4. Masnada, S.,
    5. Rubboli, G.,
    6. Gardella, E.,
    7. Lesca, G.,
    8. Ville, D.,
    9. Milh, M.,
    10. Villard, L. et al.
    (2017). Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders. Brain 140, 1316-1336. doi:10.1093/brain/awx054
    OpenUrlCrossRefPubMed
  180. ↵
    1. Wong, S. Q.,
    2. Jones, A.,
    3. Dodd, S.,
    4. Grimes, D.,
    5. Barclay, J. W.,
    6. Marson, A. G.,
    7. Cunliffe, V. T.,
    8. Burgoyne, R. D.,
    9. Sills, G. J. and
    10. Morgan, A.
    (2018). A Caenorhabditis elegans assay of seizure-like activity optimised for identifying antiepileptic drugs and their mechanisms of action. J. Neurosci. Methods 309, 132-142. doi:10.1016/j.jneumeth.2018.09.004
    OpenUrlCrossRef
  181. ↵
    1. Wu, W.,
    2. Li, Y.,
    3. Wei, Y.,
    4. Bosco, D. B.,
    5. Xie, M.,
    6. Zhao, M.-G.,
    7. Richardson, J. R. and
    8. Wu, L.-J.
    (2020). Microglial depletion aggravates the severity of acute and chronic seizures in mice. Brain Behav. Immun. 89, 245-255. doi:10.1016/j.bbi.2020.06.028
    OpenUrlCrossRefPubMed
  182. ↵
    1. Wykes, R. C.,
    2. Heeroma, J. H.,
    3. Mantoan, L.,
    4. Zheng, K.,
    5. MacDonald, D. C.,
    6. Deisseroth, K.,
    7. Hashemi, K. S.,
    8. Walker, M. C.,
    9. Schorge, S. and
    10. Kullmann, D. M.
    (2012). Optogenetic and potassium channel gene therapy in a rodent model of focal neocortical epilepsy. Sci. Transl. Med. 4, 161ra152. doi:10.1126/scitranslmed.3004190
    OpenUrlAbstract/FREE Full Text
    1. Yu, F. H.,
    2. Mantegazza, M.,
    3. Westenbroek, R. E.,
    4. Robbins, C. A.,
    5. Kalume, F.,
    6. Burton, K. A.,
    7. Spain, W. J.,
    8. McKnight, G. S.,
    9. Scheuer, T. and
    10. Catterall, W. A.
    (2006). Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nat. Neurosci. 9, 1142-1149. doi:10.1038/nn1754
    OpenUrlCrossRefPubMedWeb of Science
  183. ↵
    1. Yu, W.,
    2. Hill, S. F.,
    3. Xenakis, J. G.,
    4. Pardo-Manuel de Villena, F.,
    5. Wagnon, J. L. and
    6. Meisler, M. H.
    (2020). Gabra2 is a genetic modifier of Scn8a encephalopathy in the mouse. Epilepsia 61, 2847-2856. doi:10.1111/epi.16741
    OpenUrlCrossRef
  184. ↵
    1. Yutsudo, N.,
    2. Kamada, T.,
    3. Kajitani, K.,
    4. Nomaru, H.,
    5. Katogi, A.,
    6. Ohnishi, Y. H.,
    7. Ohnishi, Y. N.,
    8. Takase, K.,
    9. Sakumi, K.,
    10. Shigeto, H. et al.
    (2013). fosB-null mice display impaired adult hippocampal neurogenesis and spontaneous epilepsy with depressive behavior. Neuropsychopharmacology 38, 895-906. doi:10.1038/npp.2012.260
    OpenUrlCrossRefPubMed
  185. ↵
    1. Zafeiriou, M.-P.,
    2. Bao, G.,
    3. Hudson, J.,
    4. Halder, R.,
    5. Blenkle, A.,
    6. Schreiber, M.-K.,
    7. Fischer, A.,
    8. Schild, D. and
    9. Zimmermann, W.-H.
    (2020). Developmental GABA polarity switch and neuronal plasticity in Bioengineered Neuronal Organoids. Nat. Commun. 11, 3791. doi:10.1038/s41467-020-17521-w
    OpenUrlCrossRef
    1. Zeng, L.-H.,
    2. Rensing, N. R.,
    3. Zhang, B.,
    4. Gutmann, D. H.,
    5. Gambello, M. J. and
    6. Wong, M.
    (2011). Tsc2 gene inactivation causes a more severe epilepsy phenotype than Tsc1 inactivation in a mouse model of tuberous sclerosis complex. Hum. Mol. Genet. 20, 445-454. doi:10.1093/hmg/ddq491
    OpenUrlCrossRefPubMedWeb of Science
  186. ↵
    1. Zhang, B.,
    2. Zou, J.,
    3. Han, L.,
    4. Rensing, N. and
    5. Wong, M.
    (2016). Microglial activation during epileptogenesis in a mouse model of tuberous sclerosis complex. Epilepsia 57, 1317-1325. doi:10.1111/epi.13429
    OpenUrlCrossRefPubMed
  187. ↵
    1. Zhang, D.,
    2. Liu, X. and
    3. Deng, X.
    (2017). Genetic basis of pediatric epilepsy syndromes. Exp. Ther. Med. 13, 2129-2133. doi:10.3892/etm.2017.4267
    OpenUrlCrossRef
Previous Article
Back to top
Previous Article

This Issue

RSSRSS

Keywords

  • Mouse
  • Epilepsy
  • Induced seizures
  • Genetic models

 Download PDF

Email

Thank you for your interest in spreading the word on Disease Models & Mechanisms.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Modelling epilepsy in the mouse: challenges and solutions
(Your Name) has sent you a message from Disease Models & Mechanisms
(Your Name) thought you would like to see the Disease Models & Mechanisms web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
REVIEW
Modelling epilepsy in the mouse: challenges and solutions
Grant F. Marshall, Alfredo Gonzalez-Sulser, Catherine M. Abbott
Disease Models & Mechanisms 2021 14: dmm047449 doi: 10.1242/dmm.047449 Published 1 March 2021
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
REVIEW
Modelling epilepsy in the mouse: challenges and solutions
Grant F. Marshall, Alfredo Gonzalez-Sulser, Catherine M. Abbott
Disease Models & Mechanisms 2021 14: dmm047449 doi: 10.1242/dmm.047449 Published 1 March 2021

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
    • ABSTRACT
    • Introduction: what is epilepsy?
    • Modelling epilepsy
    • Problems of two sorts with genetic mouse models
    • Conclusions
    • Footnotes
    • References
  • Figures & tables
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Hyperoxia-induced bronchopulmonary dysplasia: better models for better therapies
  • AIRE deficiency, from preclinical models to human APECED disease
Show more REVIEW

Similar articles

Subject collections

  • Tools and Resources for Mouse Studies
  • Developmental Disorders

Other journals from The Company of Biologists

Development

Journal of Cell Science

Journal of Experimental Biology

Biology Open

Advertisement

DMM and COVID-19

We are aware that the COVID-19 pandemic is having an unprecedented impact on researchers worldwide. The Editors of all The Company of Biologists’ journals have been considering ways in which we can alleviate concerns that members of our community may have around publishing activities during this time. Read about the actions we are taking at this time.

Please don’t hesitate to contact the Editorial Office if you have any questions or concerns.


The twin pillars of Disease Models & Mechanisms

In her first Editorial as Editor-in-Chief, Liz Patton sets out her vision and priorities for DMM focusing on four thematic challenges: mechanisms of disease, innovative technologies, disease progression through time and therapy.


Extended deadline - The RAS Pathway: Diseases, Therapeutics and Beyond

Our upcoming special issue is welcoming submissions until 3 May 2021. Guest-edited by Donita Brady (Perelman School of Medicine at the University of Pennsylvania, USA) and Arvin Dar (Icahn School of Medicine at Mount Sinai, USA), the issue will focus on the targeting the RAS pathway.

Find out more about the issue and how to submit your manuscript.


Perspective - Modelling the developmental origins of paediatric cancer to improve patient outcomes

James Amatruda authors our first Perspective, discussing some of the key challenges in paediatric cancer from his perspective as a physician-scientist.


A muscle growth-promoting treatment based on the attenuation of activin/myostatin signalling results in long-term testicular abnormalities

In this issue’s Editor’s choice, Ketan Patel and colleagues describe how even brief exposure to muscle-growth-promoting treatments exerts a long-term detrimental effect on the testes, and test promising therapeutics to mitigate this side-effect.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About DMM
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact DMM
  • Advertising
  • Feedback

Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992