Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About DMM
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contact
    • Contact DMM
    • Advertising
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in

Search

  • Advanced search
Disease Models & Mechanisms
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Disease Models & Mechanisms

Advanced search

RSS   Twitter   Facebook   YouTube

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About DMM
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contact
    • Contact DMM
    • Advertising
    • Feedback
AT A GLANCE
Membrane trafficking in health and disease
Rebecca Yarwood, John Hellicar, Philip G. Woodman, Martin Lowe
Disease Models & Mechanisms 2020 13: dmm043448 doi: 10.1242/dmm.043448 Published 30 April 2020
Rebecca Yarwood
School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John Hellicar
School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Philip G. Woodman
School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Philip G. Woodman
  • For correspondence: philip.woodman@manchester.ac.uk martin.lowe@manchester.ac.uk
Martin Lowe
School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Martin Lowe
  • For correspondence: philip.woodman@manchester.ac.uk martin.lowe@manchester.ac.uk
  • Article
  • Figures & tables
  • Supp info
  • Info & metrics
  • PDF
Loading

ABSTRACT

Membrane trafficking pathways are essential for the viability and growth of cells, and play a major role in the interaction of cells with their environment. In this At a Glance article and accompanying poster, we outline the major cellular trafficking pathways and discuss how defects in the function of the molecular machinery that mediates this transport lead to various diseases in humans. We also briefly discuss possible therapeutic approaches that may be used in the future treatment of trafficking-based disorders.

Introduction

Membrane trafficking pathways are essential for cells to maintain critical functions, to grow, and to accommodate to their chemical and physical environment. Membrane flux through these pathways is high, and in specialised cells in some tissues can be enormous. For example, pancreatic acinar cells synthesise and secrete amylase, one of the many enzymes they produce, at a rate of approximately 0.5% of cellular protein mass per hour (Allfrey et al., 1953), while in Schwann cells, the rate of membrane protein export must correlate with the several thousand-fold expansion of the cell surface that occurs during myelination (Pereira et al., 2012). The population of cell surface proteins is constantly monitored and modified via the endocytic pathway. In some cells, endocytosis accounts for the complete turnover of surface membrane over a period of an hour or so (Steinman et al., 1976). Given such rates of trafficking, it is not surprising that even subtle alterations in transport caused by mutation or insufficiency of the trafficking machinery can impair cell function and lead to disease over the course of a lifetime.

Figure1
  • Download figure
  • Open in new tab
  • Download powerpoint

This At a Glance article describes the essential features of membrane trafficking pathways, including the crucial molecular events that drive transport. We identify instances where the mutation or loss of trafficking machinery components is associated with disease, and attempt to rationalise these effects. Several topics are not covered or are mentioned only briefly due to space limitations, including the folding and quality control of soluble or membrane-bound cargo, as exemplified by cystic fibrosis transmembrane conductance regulator (CFTR) in cystic fibrosis; motor proteins and their adaptors, which move vesicle-bound cargo around the cell; the biogenesis of mitochondria, peroxisomes, or non-membranous organelles; compartment-specific proteins that define essential organelle functions; non-vesicular lipid transport pathways; and exosome trafficking. Similarly, we only briefly discuss autophagy, which relies on membrane input from both the secretory and endocytic pathways and fusion of autophagosomes with lysosomes (Søreng et al., 2018).

General principles of membrane trafficking

Transport of proteins between compartments is initiated by (1) selection of cargo and its segregation from resident proteins of the donor compartment by the action of ‘adaptors’; (2) encapsulation of cargo-bound adaptors within a protein scaffold or ‘coat’, which drives membrane deformation and ultimately scission to form a transport vesicle, or in some cases a tubular transport intermediate; (3) movement of the vesicle to the target compartment; (4) membrane tethering, in which the vesicle is drawn towards the target membrane by extended proteins/protein complexes that work in conjunction with RAB (RAS-related in brain) GTPases; and (5) docking and membrane fusion, in which the vesicle is first tightly attached to the target membrane, followed by merging of the lipid bilayers, both processes being mediated by soluble N-ethylmaleimide-sensitive-factor attachment protein receptor (SNARE) protein complexes and supported by accessory factors (see poster). While these steps are generic to transport reactions, the compartmental specificity of the components within protein families ensures transport fidelity. Much of our understanding of these processes stems from important experimental methodologies, which we describe in Box 1.

Box 1. Experimental approaches used to study trafficking

Many molecular cell biological approaches have been used to study membrane traffic. Historically, cell-free assays that reconstitute transport reactions (Balch et al., 1984) and yeast genetics (Novick and Schekman, 1979) provided great advances in identifying the crucial molecular components, and these approaches are still relevant today for dissecting transport mechanisms (see poster, ‘In vitro vesicle budding’). Cell culture models remain a powerful tool, with recent advances including growing cells in 3D to better mimic the tissue environment (Torras et al., 2018), the use of induced pluripotent stem cells that can be isolated from human patients and differentiated into any relevant cell type (Avior et al., 2016), and the use of stem cell-generated organoids, which provide a close approximation of tissue organisation in an in vitro setting (Lancaster and Huch, 2019; Rossi et al., 2018). Animal models also remain a valuable tool to study disease mechanisms attributable to trafficking defects, and have been used very successfully in this regard (see, for example, Smits et al., 2010). Analysis of human patients is also a powerful way to assess the functional relevance of gene products in a physiological setting, and provides a direct indication of the importance of trafficking factors for human health (FitzGerald et al., 2018).

A number of more recent or specialised approaches can be applied to the study of membrane traffic, some of which are highlighted in the poster. Various methods have been developed to allow synchronous transport along the secretory pathway (Kreis and Lodish, 1986; Chen et al., 2013; Kuismanen and Saraste, 1989; Rivera et al., 2000). One of the most commonly used is the retention using selective hooks (RUSH) system, in which synchronous transport is triggered by the addition of exogenous biotin, which triggers release of cargo from an organelle-resident ‘hook’ (Boncompain et al., 2012). The use of split-fluorescent protein technology allows researchers to assess delivery into secretory compartments (Feng et al., 2017). Here, cargo and organelle-resident proteins are separately tagged with two units of a fluorescent protein that, when combined, emit fluorescence, allowing for visualisation of cargo delivery to the organelle of interest. Photo-activation or photo-switching of fluorescently tagged cargo proteins or machinery can also be used to visualise transport dynamics (Sengupta and Lippincott-Schwartz, 2013).

Mitochondrial relocation is a useful tool for assessing protein-protein interactions, but more recently has been adapted to allow visualisation of vesicle tethering in intact cells. Here, tethering factors were artificially localised to mitochondria to allow direct visualisation of tethering by light and electron microscopy (Wong and Munro, 2014). Proximity biotinylation is a recently developed and widely used technology to identify closely associated proteins within cells. There are several variations of the method, which all rely on the promiscuous activity of a biotin ligase attached to any protein of interest, allowing for biotinylation of nearby proteins and their isolation and identification by mass spectrometry (Branon et al., 2018; Hung et al., 2016; Roux et al., 2012). The approach can be used in the context of membrane traffic to identify the machinery involved in particular trafficking reactions, cargo components of transport vesicles, or the protein complements of organelles within the endomembrane system. Quantitative proteomics can also be used to identify entire complements of secreted or plasma membrane proteins (Eichelbaum et al., 2012; Steinberg et al., 2013), allowing for unbiased and comprehensive analysis of how these protein complements may change in response to perturbation of various trafficking pathways.

The secretory pathway

The biogenesis of most integral membrane proteins, secreted proteins and organelle content markers occurs at the endoplasmic reticulum (ER) (see poster). Correctly folded and post-translationally modified membrane-bound or lumenal cargoes are then selected for export by adaptor proteins that engage the coat protein complex (COP) II vesicle machinery, or by binding COPII directly (Jensen and Schekman, 2011; McCaughey and Stephens, 2018). COPII vesicle production is initiated when the ER-associated guanine nucleotide exchange factor (GEF) secretion protein (SEC) 12 (also known as PREB), activates secretion-associated RAS-related GTPase 1 (SAR1) and SAR1-GTP subsequently anchors to the membrane. The COPII coat is formed as SAR1 sequentially recruits multiple SEC23/SEC24 dimers, followed by SEC13/SEC31, to sequester adaptors and drive membrane deformation to produce COPII vesicles. These vesicles tether at and fuse with the ER-Golgi intermediate compartment (ERGIC), from which they are delivered to the cis-side of the Golgi apparatus, processes mediated by tethering factors and complexes of ERGIC- and Golgi-associated SNARE proteins (Brandizzi and Barlowe, 2013).

Cargo subsequently moves through the Golgi complex, where it can undergo post-translational modification and processing, most notably at the level of glycosylation, by enzymes that each localise within a narrow range of Golgi cisternae. How cargo moves forward is controversial, but the current consensus is that a Golgi cisterna moves ‘en bloc’, with cargo encountering Golgi-resident enzymes, as these are distilled backwards via selective incorporation into COPI vesicles (Pantazopoulou and Glick, 2019). COPI works analogously to COPII, with vesicle production initiated by the activation and membrane anchoring of ADP-ribosylation factor (ARF) 1 GTPase (Beck et al., 2009). The COPI coat is recruited en masse, and includes moieties that bind cargo and cargo adaptors, and those that scaffold the assembly and induce membrane curvature. Meanwhile, ARF GTPase activating proteins (ARF-GAPs) sense completion of COPI budding, and facilitate coat disassembly. Conserved oligomeric Golgi complex (COG) is a crucial membrane-tethering complex for COPI vesicles, working in conjunction with RAB GTPases and golgin coiled-coil proteins, while membrane fusion involves Golgi-specific SNAREs (Fisher and Ungar, 2016). In addition to intra-Golgi transport, COPI also recycles proteins from the ERGIC and Golgi apparatus back to the ER (Brandizzi and Barlowe, 2013).

Proteins exit the Golgi at the trans-Golgi network en route to the cell surface or towards the endosomal system (discussed below) (De Matteis and Luini, 2008). In the case of secretory/surface cargo, where export is constitutive, carriers appear to be tubular. In contrast, cargoes subject to regulated secretion are concentrated into specialised granules, which fuse with the surface in a Ca2+-regulated manner (Anantharam and Kreutzberger, 2019). SNARE-mediated fusion of these granules with the cell surface is facilitated by a range of specialised accessory proteins, including members of the synaptotagmin family of Ca2+ sensors.

The endocytic pathway

Surface membrane proteins define the interface between cells and their environment, and cells constantly refine the population of proteins at the surface via rounds of endocytosis and subsequent endosomal sorting (see poster). Endocytosis also brings in soluble proteins, either as ligands to surface receptors or as bulk-flow constituents. The best-characterised uptake pathway is clathrin-mediated endocytosis (McMahon and Boucrot, 2011). Here, clathrin provides the membrane-deforming scaffold, the assembly of which onto the plasma membrane is mediated by cargo-binding adaptor complexes. The best known of these is adaptor protein complex (AP) 2, which is part of a wider family of hetero-tetrameric adaptor complexes, AP1-5. AP2 binds to peptide motifs within the cytoplasmic domains of a range of membrane proteins, while also binding clathrin. Other clathrin adaptors engage client cargoes more selectively. Meanwhile, numerous accessory proteins promote key steps towards vesicle formation, leading ultimately to the recruitment of the scission GTPase, dynamin. Clathrin-coated vesicle formation also relies on local actin dynamics, and on the local generation of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] which aids both actin and coat protein recruitment. PtdIns(4,5)P2 phosphatases, notably synaptojanin, complete the vesicle cycle.

Other endocytic mechanisms employ membrane-deforming proteins that selectively engage client membrane cargo while often utilising actin to provide a driving force (Sandvig et al., 2018). Examples include those mediated by flotilin, endophilin and cell division control protein 42 homologue (CDC42). Caveolae, comprised of the membrane protein caveolin and the structural protein cavin, provide a prominent and clinically important example of plasma membrane invagination (Parton, 2018). They primarily appear to function as a reservoir for surface membrane that forms or is dissipated according to alterations in membrane tension, and they are particularly enriched in elastic tissues such as the lung and muscle. Their role may also extend to the sequestration of some signalling pathway components. Caveolae can also undergo endocytosis, although the mechanisms remain poorly defined (Parton, 2018).

Endocytic vesicles fuse to form early endosomes, which are the major sorting stations within the endocytic pathway. The early (or sorting) endosomes are defined by the presence of RAB5 and phosphatidylinositol 3-phosphate (PtdIns3P), which promote the recruitment of numerous effector proteins to the endosomal membrane (Wandinger-Ness and Zerial, 2014). Eventually, endosomes mature as RAB5 is replaced with RAB7 and PtdIns3P is converted to phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P2] to generate late endosomes. These fuse with and discharge into lysosomes, leading to the digestion of lumenal content (Wartosch et al., 2015)

To allow the degradation of integral membrane proteins, these must move from the endosomal limiting membrane into the lysosomal lumenal space. Hence, these membrane proteins are incorporated into intralumenal vesicles (ILVs), giving rise to the multivesicular body (MVB). The signal for ILV sorting, K63-linked polyubiquitin, is recognised by a series of endosomal sorting complexes required for transport (ESCRT) complexes and accessory factors (Christ et al., 2017), of which ESCRT-0 and ESCRT-I form the principal ubiquitin receptors. Cargo is passed onwards to ESCRT-III, a membrane-deforming polymer that combines with the AAA ATPase vacuolar protein sorting (VPS) 4 to mediate membrane fission and ILV completion.

Endocytic cargo can escape from the MVB-lysosome pathway by recycling to the cell surface or diverting to the Golgi complex (Cullen and Steinberg, 2018). These pathways involve the formation of tubular or vesicular intermediates that bud away from the endosome. The retriever and retromer complexes are important players in recycling from the sorting endosome that interact with sorting nexin proteins. Recycling to the plasma membrane can occur via a ‘fast’ direct route, or a ‘slow’ indirect route by which cargo is first delivered to the recycling endosome, marked by RAB11, and utilises a distinct set of molecular machineries such as EH domain-containing protein 1 (EHD1) and molecule interacting with CasL protein-like 1 (MICAL-L1), which remain less well characterised than those at the sorting endosome (Goldenring, 2015).

Synaptic vesicles are the mediators of neurotransmitter release at neuronal synapses. Synaptic vesicle biogenesis within the nerve terminal can occur directly from the plasma membrane via endocytosis, or from pre-existing endosomes through selective budding from this compartment (Saheki and De Camilli, 2012), and is therefore highly dependent upon the endocytic trafficking machinery. Fusion of synaptic vesicles with the plasma membrane for neurotransmitter release is tightly regulated, and occurs in a similar way to the regulated exocytosis of secretory granules described above, being mediated by SNAREs and controlled by Ca2+ sensors (Südhof, 2013).

Diseases that are caused by defective membrane traffic

Diseases associated with defective membrane traffic collectively manifest in practically all tissues and organ systems, with some affecting multiple systems and others restricted to one tissue type or organ. Diseases most often arise from mutations that cause loss of expression or function of transport machinery components, but some are caused by toxic gain-of-function mutations. Diseases attributable to defective trafficking machinery can be developmental in nature, or can arise during the lifespan, often manifesting during ageing. Here, we categorise membrane trafficking-related diseases based upon their tissue and organ system involvement (also see poster). The discussion is not exhaustive; for a more comprehensive list of diseases associated with defective trafficking please consult Table 1.

View this table:
  • View inline
  • View popup
  • Download powerpoint
Table 1.

Human diseases caused by mutation of membrane trafficking proteins

Neurological disease

Major neurodegenerative diseases are strongly associated with defects in membrane traffic, particularly within the endosomal system (Schreij et al., 2016). Genetic association studies link variants or altered expression levels of the clathrin-mediated endocytosis components phosphatidylinositol-binding clathrin assembly protein (PICALM) (Harold et al., 2009; Jun et al., 2010), bridging integrator 1 (BIN1)/amphiphysin 2 (Hu et al., 2011; Seshadri et al., 2010), cortactin-CD2-associated protein (CD2AP) (Hollingworth et al., 2011; Naj et al., 2011) and synaptojanin (McMahon and Boucrot, 2011; Miranda et al., 2018), with the risk of acquiring Alzheimer's disease (AD). Additionally, deficiency in VPS26 and VPS35, two subunits of the retromer complex for endosomal recycling, has been observed in AD (Small et al., 2005). In AD, differences in endocytic trafficking and processing of amyloid precursor protein (APP) to its cytotoxic product Aβ can explain the involvement of endocytic traffic in AD pathogenesis (Toh and Gleeson, 2016). Endocytic traffic may also affect AD pathogenesis in other ways; for example, by influencing the susceptibility of neurons to Aβ (which itself can disrupt endocytic traffic), the uptake of toxic Aβ aggregates from the cell exterior, the production of synaptic vesicles or abundance of post-synaptic receptors, or by altering lysosome homeostasis and autophagy pathways that are important for cell viability (Nixon, 2017). Increased processing of APP to Aβ may also arise from altered trafficking at the Golgi apparatus, although the molecular details are less clear (Joshi and Wang, 2015).

Parkinson's disease (PD) is also strongly associated with defective endocytic traffic, including the mutation or altered expression of various endocytic components (Abeliovich and Gitler, 2016). These include cyclin G-associated kinase (GAK) (Nagle et al., 2016; Nalls et al., 2014), auxilin (Edvardson et al., 2012; Olgiati et al., 2016) and synaptojanin (Krebs et al., 2013; Quadri et al., 2013) [which function in clathrin-mediated endocytosis (McMahon and Boucrot, 2011)], the retromer subunit VPS35 (Vilarino-Guell et al., 2011; Zimprich et al., 2011) and the retromer-associated protein receptor-mediated endocytosis 8 (RME-8) (Vilarino-Guell et al., 2014). As in AD, endocytic traffic may lead to PD pathology in several ways; for example, by influencing the uptake of toxic α-synuclein aggregates, by altering synaptic vesicle or neurotransmitter receptor traffic, or by affecting lysosome homeostasis and autophagy (Abeliovich and Gitler, 2016). Of note, mutations of several lysosomal proteins are strongly associated with PD (Dehay et al., 2013), as is defective autophagic clearance of mitochondria (Ryan et al., 2015).

Defective traffic in the early secretory pathway is also relevant for PD pathogenesis. RAB39B, a mutation of which is associated with early-onset PD as well as X-linked intellectual disability (Giannandrea et al., 2010; Mata et al., 2015; Wilson et al., 2014), is required for ER-to-Golgi transport of the synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA) receptor subunit GluA2 (Mignogna et al., 2015). Interestingly, excess α-synuclein can also disrupt ER-to-Golgi traffic, most likely at the level of COPII vesicle tethering or fusion (Cooper et al., 2006; Thayanidhi et al., 2010). α-Synuclein appears to normally function in synaptic vesicle fusion (Burre et al., 2010; Chandra et al., 2005), hence its aggregation or loss of function likely also directly affect neurotransmitter release (Carstea et al., 1997; Polymeropoulos et al., 1997; Singleton et al., 2003). As for AD, PD pathology may arise from defects in other trafficking pathways. A protein of much current interest is leucine-rich repeat kinase 2 (LRRK2), which is mutated in ∼1% of sporadic and ∼5% of familial PD (Paisan-Ruiz et al., 2004; Zimprich et al., 2004). LRRK2 phosphorylates several RAB GTPases (Steger et al., 2016), functioning in diverse trafficking steps, and the most common PD mutations cause LRRK2 activation (West et al., 2005). Excessive LRRK2-mediated phosphorylation alters the ability of these RABs to engage with regulatory factors and effector proteins, thereby disrupting traffic (Steger et al., 2016). Of interest, RAB29 stimulates LRRK2 activation at cellular membranes (Gomez et al., 2019; Purlyte et al., 2018), and is also independently linked to PD, indicating that these proteins (co)operate in a common disease pathway (MacLeod et al., 2013).

Frontotemporal dementia (FTD) is a neurodegenerative disease that is commonly associated with early onset of symptoms (Warren et al., 2013). Mutation of C9orf72, which encodes a RAB GEF, is strongly associated with familial FTD (DeJesus-Hernandez et al., 2011; Renton et al., 2011). Expansion of nucleotide repeats may cause a toxic gain of function at the RNA level, whereas a loss of protein function may also contribute to FTD pathology by altering trafficking to the lysosome, with likely downstream effects upon autophagy (Balendra and Isaacs, 2018). Consistent with this, FTD can be caused by mutation of the ESCRT-III subunit charged multivesicular body protein 2B (CHMP2B), which is involved in MVB sorting (Skibinski et al., 2005).

Amyotrophic lateral sclerosis (ALS), or motor neuron disease, results in progressive degeneration of motor neurons (Hardiman et al., 2017). ALS and FTD represent two extremes of a phenotypic spectrum, and share common pathogenic mechanisms (Ferrari et al., 2011). Thus, C9orf72 mutation causes ALS as well as FTD (DeJesus-Hernandez et al., 2011; Renton et al., 2011). Other endocytic proteins are mutated in ALS, including the RAB5 GEF Alsin (also known as ALS2) and the inositol phosphatase factor-induced gene 4 (FIG4) (Chow et al., 2009; Yang et al., 2001). Dysregulation of endocytic transport, in turn affecting lysosome function and autophagy, is therefore associated with ALS. Of note, mutation of several ALS-associated proteins, including superoxide dismutase 1 (SOD1), RNA-binding protein fused in sarcoma (FUS) and TAR DNA-binding protein 43 (TDP43; also known as TARDBP), have been reported to disrupt the secretory pathway, suggesting additional mechanisms linking defective traffic to ALS (Soo et al., 2015).

Similarly, mutation of endocytic factors is associated with hereditary spastic paraplegia (HSP), a genetically diverse disorder that manifests as progressive loss of lower limb movement control (Blackstone et al., 2011). Notable HSP-involved proteins are spastin (SPG4; also known as SPAST), which couples membrane remodelling with microtubule dynamics, including during endocytic traffic (Hazan et al., 1999), spartin (SPG20; also known as SPART), an endosomal protein that also associates with microtubules (Patel et al., 2002), and strumpellin (SPG8; also known as WASHC5), which is part of the WASH WASP and SCAR (WASH) homologue complex that operates in retromer-mediated endocytic recycling (Valdmanis et al., 2007). Interestingly, spastin also functions at the ER, and mutations in Atlastin (also known as ATL1), another ER membrane remodelling protein, also cause HSP (Zhao et al., 2001). It is currently unclear how changes in ER morphology lead to HSP. Another group of HSPs is caused by mutations within subunits of the AP4 and AP5 adaptor complexes that function in post-Golgi trafficking (Bauer et al., 2012; Hardies et al., 2015; Moreno-De-Luca et al., 2011; Slabicki et al., 2010; Verkerk et al., 2009), which likely affect endolysosomal function (Sanger et al., 2019). Interestingly, AP4 is important for trafficking of the autophagy-initiating factor ATG9A, suggesting a link between HSP and dysregulated autophagy (Mattera et al., 2017; Davies et al., 2018). HSP also results from mutations in ubiquitin-associated protein 1 (UBAP1) and VPS37A (Farazi Fard et al., 2019; Zivony-Elboum et al., 2012), components of ESCRT-I required for MVB sorting (Schmidt and Teis, 2012). Mutations in Trk-fused gene (TFG) and tectonin beta-propeller repeat-containing protein 2 (TECPR2), proteins that associate with COPII and help mediate ER-to-Golgi transport, also cause HSP, indicating that defective trafficking in the early secretory pathway can also cause this type of disorder (Beetz et al., 2013; Stadel et al., 2015).

Charcot Marie-Tooth (CMT) disease is a genetically and clinically diverse group of peripheral neuropathies (Rossor et al., 2013). Most CMT forms result from altered expression or mutation of myelin components, but mutation of several endocytic proteins is also a cause. For example, recessive demyelinating forms of CMT (CMT4) result from mutation of the endocytic recycling protein SH3 domain and tetratricopeptide repeats 2 (SH3TC2) (Senderek et al., 2003), as well as the myotubularins and FIG4, which influence traffic by acting upon endosomal phosphoinositides (Azzedine et al., 2003; Bolino et al., 2000; Nakhro et al., 2013; Zhang et al., 2008). Lipopolysaccharide-induced tumour necrosis factor alpha factor (LITAF), a protein involved in endocytic protein sorting, causes the autosomal dominant demyelinating CMT1 (also known as SIMPLE) (Street et al., 2003). Meanwhile, mutation of RAB7 causes a dominant axonal form of CMT (Verhoeven et al., 2003).

Mutations in the endocytic machinery are prevalent in other rare neurological disorders (Table 1). The consequent defects in endocytosis and endosomal recycling may alter presynaptic vesicle biogenesis or postsynaptic neurotransmitter receptor availability. Meanwhile, defects in the later stages of the endocytic pathway can affect lysosome homeostasis and autophagy, which, if impaired, result in cytotoxic stress. Defective traffic in the secretory pathway is also associated with several neurological diseases. Here, defective transport may alter axon and dendrite morphogenesis, affect the surface levels of neurotransmitter receptors, or induce cytotoxic ER stress due to cargo accumulation in this compartment.

Ocular disease

Eye pathology has been reported in several trafficking-related multi-systemic disorders, including the ciliopathies and the X-linked Lowe syndrome, which are described below. Choroideremia, which is an eye-specific disorder, manifests as degeneration of rod photoreceptors and retinal pigment epithelial cells (Moosajee et al., 2014). It is caused by mutations in RAB escort protein 1 (REP-1), a chaperone required for the prenylation of all RABs, grossly disrupting membrane traffic in the affected cells (Alory and Balch, 2001; Sankila et al., 1992; Seabra et al., 1993). The retinal tissue-restricted nature of choroideremia is likely because a second RAB escort protein, REP-2, compensates for the loss of REP-1 in other cell types, but is not expressed in the retina (Cremers et al., 1994).

Skin, bone and connective tissue disorders

The extracellular matrix, which surrounds cells in our skin, bone and connective tissues, is a major secreted product in the human body. Consequently, matrix-rich tissues appear particularly susceptible to mutations affecting the secretory pathway that disrupt matrix deposition. Mutations in SEC23A, a component of the COPII coat, cause the skeletal disorder cranio-lentico-sutural dysplasia (CLSD) (Boyadjiev et al., 2006). Although COPII is essential for secretion, CLSD is tissue restricted, because most cells also express the functionally analogous SEC23B, sustaining COPII functionality (Khoriaty et al., 2018). Mutations in Sedlin (also known as TRAPPC2), a component of the transport protein particle (TRAPP) complex operating between the ER and Golgi, a RAB GEF and possible vesicle-tethering factor (Barrowman et al., 2010), cause X-linked spondyloepiphyseal dysplasia tarda (SEDT) (Gedeon et al., 1999). Sedlin also regulates SAR1, and both CLSD and SEDT mutations give rise to defective procollagen export from the ER, causing matrix defects and skeletal dysplasia (Boyadjiev et al., 2011; Venditti et al., 2012). Null and hypomorphic mutations in the Golgi vesicle-tethering factor Golgi microtubule-associated protein of 210 kDa [GMAP-210; also known as thyroid hormone receptor interactor 11 (TRIP11)] are responsible for the lethal skeletal dysplasia achondrogenesis type 1A (ACG1A) and the milder odontochondrodysplasia (ODCD), respectively (Smits et al., 2010; Wehrle et al., 2019). In both cases, the major pathogenic mechanism is defective traffic and improper glycosylation of matrix proteins within the Golgi (Smits et al., 2010; Wehrle et al., 2019). GMAP-210 is also important for cargo traffic to the primary cilium (Follit et al., 2008), and the phenotype may therefore partly arise from defective ciliary signalling that is required to maintain chondrocyte differentiation (Wang et al., 2013). Similarly, mutations in the trans-Golgi protein RAB6-interacting golgin (GORAB), which functions in COPI-mediated traffic, cause the skin and bone disorder gerodermia osteodysplastica, likely as a consequence of disrupted matrix protein glycosylation (Hennies et al., 2008; Witkos et al., 2019). This not only affects matrix assembly, but is also important for controlling TGFβ (also known as TGFB1) signalling to prevent cell senescence (Chan et al., 2018). Mutations in Golgi RAB33B cause Smith-McCort syndrome (Dupuis et al., 2013), an osteochondrodysplasia. This is likely due to defects in Golgi traffic and autophagosome formation, both RAB33B-dependent processes (Morgan et al., 2019).

Immunological disease

Membrane traffic is vital for innate and adaptive immunity; for example, in mediating phagocytosis of invading microorganisms, supporting the biosynthesis and signalling of the many receptors found on immune cells, and facilitating the secretion of antibodies, cytokines and other immunomodulatory factors. Consequently, several immunological diseases, including immunodeficiencies and autoimmune disorders, can be attributed to defective membrane trafficking. These include familial haemophagocytic lymphohistiocytosis, an immune disorder caused by mutations in protein unc-13 homologue D (MUNC-13-4; also known as UNC13D) (Feldmann et al., 2003), syntaxin 11 (zur Stadt et al., 2005) or syntaxin binding protein 2 (zur Stadt et al., 2009). These proteins control lytic granule release at the T-cell and natural killer (NK) cell immune synapse and platelet granule exocytosis. As a result, cells with these mutations have a compromised ability to mediate cell killing, leading to hyperactivation of the immune system (Gholam et al., 2011). Another interesting example is leukocyte tyrosine kinase receptor (LTK), an ER-associated tyrosine kinase that controls COPII assembly and ER-to-Golgi traffic (Centonze et al., 2019). Gain-of-function mutations in LTK are associated with the autoimmune disorder systemic lupus erythematosus, and it has been proposed that increased LTK activity, and therefore increased COPII-mediated ER export, allows plasma cells to cope better with the increased production and secretion of autoantibodies, thereby contributing to the autoimmune phenotype seen in lupus (Centonze et al., 2019; Li et al., 2004).

Intestinal disorders

Defective traffic within both the secretory and endocytic pathways can affect enterocyte function and cause intestinal disease. Enterocytes absorb fats from the intestine and package them into chylomicron particles, which form at the ER and are secreted into the bloodstream. Chylomicron retention disease is a rare disorder caused by mutation in SAR1B (Jones et al., 2003), which impairs chylomicron particle export from the ER, reducing their secretion and the availability of fats and fat-soluble vitamins throughout the body (Roy et al., 1987). The disease is restricted to enterocytes, most likely because the paralogue SAR1A fulfils SAR1 function in other cell types. Microvillus inclusion disease also affects enterocytes, with a loss of microvilli from the apical surface and impaired nutrient absorption (Davidson et al., 1978). It is caused by mutations in the actin motor myosin (MYO) 5B, which is required for endosomal recycling to the apical membrane (Muller et al., 2008), or in syntaxin 3, which is required for vesicle fusion at the apical membrane (Wiegerinck et al., 2014).

Liver disease

Membrane trafficking is important in hepatocytes, which secrete a multitude of proteins into the bloodstream. Mutation of SCY1-like pseudokinase 1 (SCYL1) or neuroblastoma-amplified sequence (NBAS), which function in COPI vesicle traffic, can manifest in the liver, but typically also affect other tissues, and are discussed further in the ‘Multi-systemic disorders’ section below.

Cardiovascular disease and blood disorders

Cholesterol is transported in the blood as low-density lipoprotein (LDL) particles. These are internalised, particularly into hepatocytes, by receptor-mediated endocytosis. Defective LDL uptake causes hypercholesterolaemia, which can manifest as atherosclerosis and premature coronary heart disease (Brown and Goldstein, 1986). Mutations in the LDL receptor (LDLR) that abolish LDL binding have been reported, but of more relevance to this article are LDLR mutations that disrupt binding to disabled homologue 2 (DAB2) and autosomal recessive hypercholesterolaemia (ARH; also known as LDLRAP1), adaptor proteins that mediate LDLR uptake by clathrin-dependent endocytosis (Davis et al., 1986; He et al., 2002; Maurer and Cooper, 2006). Similarly, mutation of ARH itself can also cause hypercholesterolaemia (Garcia et al., 2001).

Defects within the secretory pathway can affect red blood cell production and the production of clotting factors. In the former, mutations within the COPII subunit SEC23B cause congenital dyserythropoietic anaemia type II (Bianchi et al., 2009; Schwarz et al., 2009), likely due to perturbation of ER-to-Golgi traffic in erythroblasts that impairs the delivery and glycosylation of proteins required for red blood cell formation (Denecke and Marquardt, 2009). The widespread expression of the paralogue SEC23A likely accounts for the restricted phenotype of SEC23B mutation. The blood clotting disorder combined factor V and VIII deficiency results from mutations in multiple coagulation factor deficiency 2 (MCFD2) and lectin mannose binding 1 (LMAN1) (Nichols et al., 1998; Zhang et al., 2003a). MCFD2 and LMAN1 combine to form a cargo receptor for the ER-to-Golgi transport of blood clotting factors V and VIII and thus are essential for their secretion (Zhang et al., 2005).

Renal disorders

Renal dysfunction occurs in several multi-systemic trafficking disorders, most notably the ciliopathies. Mutations in the actin-associated proteins CD2AP and MYO1E cause focal segmental glomerulosclerosis, which progressively reduces the ability of the glomerulus to filter the blood, ending in renal failure (Kim et al., 2003; Mele et al., 2011). Both proteins participate in endocytosis, which is required to maintain podocyte foot processes and thus effective filtration, but whether defective traffic constitutes a disease mechanism is unclear (Inoue and Ishibe, 2015). The proteins may directly act upon actin within the foot processes (Inoue and Ishibe, 2015), while CD2AP is also a component of the slit diaphragm (Shih et al., 2001). Dent disease and cystinosis are proximal tubulopathies in which the ability of the proximal tubule to re-absorb proteins by endocytosis is disrupted (Ivanova et al., 2015; Piwon et al., 2000; Wang et al., 2000). However, in both diseases, the mutations are not in the trafficking machinery; Dent disease is caused by mutation in the endosomal chloride channel chloride channel protein 5 (ClC-5; also known as CLCN5) (Lloyd et al., 1996), and cystinosis by mutation of a lysosomal cystine transporter (Town et al., 1998).

Muscular disorders

Centronuclear myopathies (CNMs) are a group of muscle disorders that derive their name from centrally located muscle cell nuclei. Mutations in the membrane fission protein dynamin 2 or in BIN1, a BAR domain protein able to sculpt membrane shape, cause congenital CNM (Bitoun et al., 2005; Nicot et al., 2007). These two proteins, which physically interact, participate in endocytosis in most cells (Takei et al., 1999). However, in muscle, they are critical for the formation and maintenance of T-tubules, membrane invaginations that penetrate into muscle cells (Chin et al., 2015; Lee et al., 2002). Thus, disruption of T-tubule morphogenesis and function is a major disease mechanism in CNMs. Mutation of myotubularin 1 (MTM1), a member of the myotubularin family of endosomal inositol phosphatases, causes an X-linked CNM (Buj-Bello et al., 1999; Laporte et al., 2000). MTM1 binds to BIN1 (Royer et al., 2013), and, as seen in congenital CNMs, MTM1 mutation disrupts T-tubules, indicating a likely common disease mechanism (Al-Qusairi et al., 2009; Dowling et al., 2009). Mutation of dysferlin, a Ca2+-binding protein with homology to the membrane fusion regulator synaptotagmin, causes muscular dystrophy (Bashir et al., 1998; Illa et al., 2001; Liu et al., 1998). The likely pathological mechanism is disruption of muscle cell integrity due to a defect in vesicle fusion and repair of the plasma membrane (Bansal et al., 2003; Lek et al., 2012). Mutations in two proteins required for ER-to-Golgi transport, the TRAPP complex subunit TRAPPC11, and the SNARE Golgi SNAP receptor complex member 2 (GOSR2), are also linked to muscular dystrophy (Bögershausen et al., 2013; Tsai et al., 2013). Hypoglycosylation of α-dystroglycan occurs in both cases (Larson et al., 2018). Because α-dystroglycan glycosylation is important for linking the muscle sarcolemma to the extracellular matrix (Barresi and Campbell, 2006), these glycosylation defects can explain the destabilisation of muscle fibres seen in patients.

Multi-systemic disorders

There are numerous multi-systemic disorders associated with mutations in the membrane trafficking machinery (Table 1). Several belong to larger disease classes such as congenital disorders of glycosylation (CDGs), ciliopathies and lysosomal storage disorders (LSDs). Many CDGs are caused by loss of Golgi glycosylation enzyme or ion or sugar transporter activity, but mutations within the COG vesicle-tethering complex account for several (Ng and Freeze, 2018). Here, impaired COPI-dependent recycling of glycosylation enzymes in the Golgi stack leads to their inefficient retention, affecting the glycosylation of proteins and lipids (Fisher and Ungar, 2016).

The ciliopathies are a large disease class associated with loss of cilia or defective ciliary signalling (Reiter and Leroux, 2017). The commonly affected tissues include the brain, retina and kidney. Several ciliopathies are associated with defective transport of proteins to or within the cilium, although the latter is not vesicle mediated (Reiter and Leroux, 2017). Vesicle-mediated transport from the Golgi apparatus to the cilium is important for the generation and maintenance of cilia, with RAB8 and its effector, the exocyst vesicle-tethering complex, constituting the key machinery of this trafficking step (Hsiao et al., 2012). Indeed, mutations in two exocyst subunits, exocyst complex component 84 (EXO84; also known as EXOC8) and SEC8 (also known as EXOC4), have been found in the ciliopathies Joubert syndrome and Meckel–Gruber syndrome (Dixon-Salazar et al., 2012; Shaheen et al., 2013a,b). Intraflagellar transport protein 20 (IFT20) is an important player in Golgi-to-cilium transport of certain membrane proteins (Follit et al., 2008; Monis et al., 2017), and mutation of VPS15, which also causes a ciliopathy, impairs this transport pathway (Stoetzel et al., 2016). Interestingly, IFT20 is anchored to the Golgi by GMAP-210 (Follit et al., 2008), suggesting that the two skeletal dysplasias caused by GMAP-210 mutation (ACG1A and ODCD, discussed above) may have a ciliary component (Smits et al., 2010; Wehrle et al., 2019).

LSDs are a third broad class of disease, defined by impaired lysosome-mediated degradation (Platt et al., 2018). Many LSDs result from the loss of hydrolase expression, but some involve defective hydrolase trafficking. For example, ceroid-lipofuscinosis, neuronal 8 (CLN8) is a cargo receptor for trafficking of newly synthesised hydrolases from the ER to the Golgi (di Ronza et al., 2018), and mutations in CLN8 cause the LSD Batten disease (Ranta et al., 1999). Mutation of VPS33A, a common component of the class C core vacuole/endosome tethering (CORVET) and homotypic fusion and protein sorting (HOPS) multi-subunit vesicle-tethering complexes that operate at the early and late endosome/lysosome, respectively, causes the LSD mucopolysaccharidosis (Kondo et al., 2017).

Lysosome-related organelles (LROs) are found in specific cell types and carry out specialised functions (Marks et al., 2013). Examples include melanosomes in skin melanocytes and retinal pigment epithelial cells, which are important for pigmentation, lytic granules of NK and T-cells that mediate target cell killing, and Weibel–Palade bodies in endothelial cells that contribute to blood clotting. Chediak–Higashi, Griscelli and Hermansky–Pudlak syndromes are all associated with defective LRO biogenesis, and in many cases are due to defects in the relevant LRO trafficking machinery (Huizing et al., 2008). For example, Griscelli syndrome, characterised by hypopigmentation and immunodeficiency, can be caused by mutations in RAB27A, its effector melanophilin, or the actin motor MYO5A, which together facilitate melanosome movement to the cell periphery for delivery of pigment to neighbouring keratinocytes (Ménasché et al., 2003; Ménasché et al., 2000; Pastural et al., 1997). Hermansky–Pudlak syndrome, which presents as hypopigmentation, bleeding and additional symptoms depending on the subtype, is caused by mutations in subunits of the biogenesis of lysosome-related organelle complex (BLOC)-1 (Li et al., 2003; Morgan et al., 2006), BLOC-2 (Anikster et al., 2001; Zhang et al., 2003b), BLOC-3 (Oh et al., 1996; Suzuki et al., 2002) or AP3 (Ammann et al., 2016; Dell'Angelica et al., 1999) complexes that are involved in transport of cargo proteins from endosomes to LROs. Chediak–Higashi syndrome, which manifests as albinism, excessive bleeding and immunodeficiency, is caused by mutations in lysosomal trafficking regulator (LYST) (Karim et al., 2002), which appears to function in endolysosomal trafficking (Gil-Krzewska et al., 2016).

Lysosome dysfunction has also been reported in the rare X-linked disorder Lowe syndrome, which affects the brain, eyes and kidneys, and is caused by mutation of the inositol phosphatase occulocerebrorenal Lowe syndrome protein (OCRL) (Attree et al., 1992). The aetiology of Lowe is complex, since build-up of the OCRL substrate PtdIns(4,5)P2 disrupts not only lysosomal function, which results in an additional autophagy defect, but also affects endocytosis, endocytic recycling and trafficking to the cilium (De Matteis et al., 2017). Hence, disruption of several trafficking steps is likely to cause the Lowe syndrome phenotypes seen in patients. Interestingly, mutations in OCRL also cause Dent-2 disease, for which the symptoms are largely restricted to the kidney (Hoopes et al., 2005). The reasons for this dual pathophenotype remain unclear.

Defective COPI-dependent recycling from the Golgi apparatus to the ER is associated with two multi-systemic genetic disorders, both affecting the liver. Mutation of the COPI accessory protein SCYL1 causes low γ-glutamyl-transferase cholestasis, acute liver failure, and neurodegeneration (CALFAN) syndrome, manifesting as hepatocyte death and liver failure, as well as ataxia resulting from cerebellar neurodegeneration (Lenz et al., 2018; Schmidt et al., 2015). Mutation of NBAS, a component of the NBAS/RINT1/ZW10 (NRZ) ER-localised COPI vesicle-tethering complex results in a nearly identical liver phenotype, and also causes bone, connective tissue, retina and immune system defects (Balasubramanian et al., 2017; Haack et al., 2015; Maksimova et al., 2010; Segarra et al., 2015). These findings suggest a high requirement for the secretory pathway in the affected cell types, including hepatocytes, consistent with them secreting large amounts of material into the bloodstream.

Cancer

Membrane trafficking is intimately linked with cancer, with trafficking in both the secretory and endocytic pathways playing an important role in many types of cancer. Endocytic trafficking is responsible for the abundance and signalling capacity of mitogenic receptors, adhesion molecules and immune modulators that determine the ability of the immune system to detect cancer cells (Mellman and Yarden, 2013). Hence, changes in the expression levels or degree of phosphorylation of endocytic trafficking machinery can correlate with cancer susceptibility or prognosis. In addition, cancer-causing mutations within the components of the endocytic machinery have been described. A recent example is RAB35, which mediates various endocytic trafficking steps (Klinkert and Echard, 2016). Oncogenic mutations in RAB35, although extremely rare, have been shown to cause its constitutive activation and promiscuous growth factor signalling from endosomal compartments (Wheeler et al., 2015). Altered expression and splicing of tumour susceptibility gene 101 (TSG101), has been found in cancer (Jiang et al., 2013), whereby impaired growth factor receptor downregulation at the endosome may contribute to tumourigenesis (Lu et al., 2003). Interestingly, toxic gain-of-function mutation of p53 can also promote the recycling of integrins and growth factor receptors, which is responsible for increased cell migration and metastatic potential of tumour cells (Muller et al., 2009).

The secretory pathway can influence cancer susceptibility and disease progression in a number of ways (Dejeans et al., 2014). We know that cell surface glycans, which are generated within the secretory pathway, are important for processes contributing to cancer development and metastasis, including signalling, adhesion and migration (Pinho and Reis, 2015). A particularly interesting example of an oncogenic trafficking protein is Golgi phosphoprotein 3 (GOLPH3), which is highly expressed in several cancers (Scott et al., 2009). GOLPH3 appears to participate in intra-Golgi transport, which is required for Golgi enzyme retention and correct protein glycosylation (Ali et al., 2012; Chang et al., 2013; Isaji et al., 2014; Pereira et al., 2014), as well as export of cargo from the trans-Golgi (Rahajeng et al., 2019). GOLPH3 overexpression stimulates a number of mitogenic signalling pathways, which may be a consequence of altering the cell surface glycan profile and thus the signalling capacity of surface receptors (Rizzo et al., 2017). In addition, GOLPH3 has been implicated in a DNA stress response pathway, linking DNA damage to the Golgi apparatus (Farber-Katz et al., 2014). In this context, GOLPH3 overexpression can promote cell survival upon DNA damage, which may be relevant to the cancer phenotype. Another interesting example is mutation of the ER-to-Golgi trafficking protein LMAN1 in colorectal cancers, which causes reduced secretion of the LMAN1 client protein α-1-antitrypsin (A1AT; also known as SERPINA1), an angiogenesis inhibitor, thereby contributing to tumour blood supply and growth (Roeckel et al., 2009).

Diabetes

Exocytosis of insulin from pancreatic beta cells, and the endocytic and secretory trafficking of insulin receptors and glucose transporters in target cells, may all directly affect diabetes susceptibility or progression. For example, the inositol phosphatase suppressor of actin 2 (SAC2; also known as INPP5F) functions in insulin granule exocytosis from pancreatic beta cells, and its levels are reduced in type II diabetic patients, suggesting that SAC2 insufficiency might contribute to impaired insulin release in these patients (Nguyen et al., 2019). Another protein of interest is clathrin heavy chain 22 (CHC22), which is involved in the trafficking of glucose transporter type 4 (GLUT4; also known as SLC2A4) in muscle and fat cells, where it mediates glucose uptake in response to insulin signalling (Vassilopoulos et al., 2009). Two CHC22 variants exist in the human population, which differ in their ability to traffic GLUT4 and thus remove glucose from the bloodstream (Fumagalli et al., 2019). The ‘new’ variant, which appeared later in evolution, increases cell surface levels of GLUT4 and glucose removal from the bloodstream, whereas the ‘older’ variant has a lower capacity to traffic GLUT4 to the cell surface and therefore to clear blood glucose. However, it remains to be seen whether people carrying the ‘older’ variant have a greater diabetes risk.

Summary and conclusions

Membrane trafficking is a ubiquitous process and fundamentally important to all tissues. However, defects in components of the trafficking machinery often manifest as a tissue-specific phenotype. The nature of the observed defect depends upon the tissue expression of the trafficking component in question and its degree of functional redundancy, the rate-limiting trafficking steps within different cell types, and the abundance and types of cargo proteins expressed in different cells. The nature of the mutation itself is also important, as it can result in either a complete loss of expression or function of the trafficking component, a partial loss of expression or function, or, in some cases, a toxic overexpression or gain of function. This is expected to cause corresponding changes in the associated trafficking pathway(s), resulting in the observed phenotype. With regard to the tissue-specific nature of the diseases, it is interesting that the nervous system is particularly sensitive to disruption of the endolysosomal system, possibly due to the importance of endocytic traffic to maintain neurotransmission as well as the sensitivity of neurons to disrupted lysosome function and autophagy. Skin, bone and connective tissues are more sensitive to defective secretory traffic, reflecting the high secretory load in these tissues. Despite these generalisations, it is often hard to predict the phenotype one might expect upon mutation of a particular trafficking component, and understanding the disease mechanisms underlying most trafficking-related disorders is not trivial.

Defective traffic can manifest in a particular phenotype for several reasons. In some cases, it may be the failure to deliver a cargo protein to the correct destination compartment, causing dysfunction of that organelle, or the impaired ability of cells to secrete or internalise cargo effectively, resulting in systemic effects. In other cases, the inability to traffic proteins from their donor compartments may be problematic, as in the case of ER stress induction when proteins fail to exit this compartment. Similarly, the inability to degrade substrates by autophagy is cytotoxic. It is also worth noting that although impaired traffic can cause disease, in some contexts, trafficking might be required to sustain a disease phenotype. This appears to be true in cancer, where endocytic traffic is required to sustain proliferative signalling and cell migration, important for tumour growth and metastasis. Thus, in terms of developing therapeutics for trafficking disorders, a range of strategies is possible (Box 2). Gene therapy is one possible route, but drugs can potentially rescue defective organelle function. Therapeutic strategies could alleviate the cell stress that occurs downstream from organelle dysfunction, restore the disrupted trafficking step, or, in some cases, inhibit a transport step that is driving the disease phenotype. As we identify more rare diseases attributable to defects in membrane traffic, and better understand the mechanisms that underlie these and other more common disorders, we will undoubtedly be able to deliver better treatments and long-term therapies in the future.

Box 2. Therapeutic approaches to rescue traffic-dependent phenotypes

We lack effective therapies to treat most of the diseases associated with defective membrane trafficking. In principle, diseases caused by genetic mutation could be treated with gene therapy, but using this approach to successfully treat human disease remains in its infancy (Dunbar et al., 2018). A promising example is gene therapy for retinal dystrophy choroideremia, which is caused by loss of the RAB escort protein REP-1 (Sankila et al., 1992; Seabra et al., 1993). Here, CHM, the gene that encodes REP-1, is administered to the eye via a viral delivery vector. The therapy is currently undergoing phase 3 clinical trials following promising results in earlier stages of clinical testing (Xue et al., 2018). Many trafficking regulators, which are enzymes, are potentially amenable to treatment with small-molecule drugs. This approach remains to be explored more fully, but there is significant interest in targeting the protein kinase LRRK2 for treatment of Parkinson's disease (Zhao and Dzamko, 2019). Pathogenic LRRK2 mutations lead to overactive kinase activity and so chemically inhibiting this activity could protect against Parkinson's disease. As such, clinical trials are underway to test the safety and efficacy of LRRK2 inhibitors in human patients.

Footnotes

  • Competing interests

    The authors declare no competing or financial interests.

  • Funding

    R.Y. is supported by a Wellcome Trust PhD studentship (203995/Z/16/Z) and J.H. by a joint University of Manchester and Agency for Science, Technology and Research (Singapore A*STAR) PhD studentship. Research in the P.G.W. laboratory is supported by grants from the Wellcome Trust (212246/Z/18/Z), the Biotechnology and Biological Sciences Research Council (BBSRC) (BB/R015864/1) and the Leverhulme Trust (RPG-2018-091). Research in the M.L. laboratory is supported by grants from the BBSRC (BB/S014799/1, BB/T000945/1), the Lowe Syndrome Trust (ML/MU/LST NOV/18) and the Leverhulme Trust (RPG-2019-134).

  • At a glance

    A high-resolution version of the poster is available for downloading in the online version of this article at http://dmm.biologists.org/content/13/4/dmm043448/F1.poster.jpg.

  • © 2020. Published by The Company of Biologists Ltd
http://creativecommons.org/licenses/by/4.0

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

References

  1. ↵
    1. Abeliovich, A. and
    2. Gitler, A. D.
    (2016). Defects in trafficking bridge Parkinson's disease pathology and genetics. Nature 539, 207-216. doi:10.1038/nature20414
    OpenUrlCrossRefPubMed
    1. Alazami, A. M.,
    2. Hijazi, H.,
    3. Kentab, A. Y. and
    4. Alkuraya, F. S
    . (2014). NECAP1 loss of function leads to a severe infantile epileptic encephalopathy. J. Med. Genet. 51, 224-228. doi:10.1136/jmedgenet-2013-102030
    OpenUrlAbstract/FREE Full Text
  2. ↵
    1. Ali, M. F.,
    2. Chachadi, V. B.,
    3. Petrosyan, A. and
    4. Cheng, P. W.
    (2012). Golgi phosphoprotein 3 determines cell binding properties under dynamic flow by controlling Golgi localization of core 2 N-acetylglucosaminyltransferase 1. J. Biol. Chem. 287, 39564-39577. doi:10.1074/jbc.M112.346528
    OpenUrlAbstract/FREE Full Text
    1. Aligianis, I. A.,
    2. Johnson, C. A.,
    3. Gissen, P.,
    4. Chen, D. R.,
    5. Hampshire, D.,
    6. Hoffmann, K.,
    7. Maina, E. N.,
    8. Morgan, N. V.,
    9. Tee, L.,
    10. Morton, J. et al
    . (2005). Mutations of the catalytic subunit of RAB3GAP cause Warburg Micro syndrome. Nat. Genet. 37, 221-223. doi:10.1038/ng1517
    OpenUrlCrossRefPubMedWeb of Science
    1. Aligianis, I. A.,
    2. Morgan, N. V.,
    3. Mione, M.,
    4. Johnson, C. A.,
    5. Rosser, E.,
    6. Hennekam, R. C.,
    7. Adams, G.,
    8. Trembath, R. C.,
    9. Pilz, D. T.,
    10. Stoodley, N. et al
    . (2006). Mutation in Rab3 GTPase-activating protein (RAB3GAP) noncatalytic subunit in a kindred with Martsolf syndrome. Am. J. Hum. Genet. 78, 702-707. doi:10.1086/502681
    OpenUrlCrossRefPubMedWeb of Science
  3. ↵
    1. Allfrey, V.,
    2. Daly, M. M. and
    3. Mirsky, A. E.
    (1953). Synthesis of protein in the pancreas. II. The role of ribonucleoprotein in protein synthesis. J. Gen. Physiol. 37, 157-175. doi:10.1085/jgp.37.2.157
    OpenUrlAbstract/FREE Full Text
  4. ↵
    1. Alory, C. and
    2. Balch, W. E.
    (2001). Organization of the Rab-GDI/CHM superfamily: the functional basis for choroideremia disease. Traffic 2, 532-543. doi:10.1034/j.1600-0854.2001.20803.x
    OpenUrlCrossRefPubMedWeb of Science
  5. ↵
    1. Al-Qusairi, L.,
    2. Weiss, N.,
    3. Toussaint, A.,
    4. Berbey, C.,
    5. Messaddeq, N.,
    6. Kretz, C.,
    7. Sanoudou, D.,
    8. Beggs, A. H.,
    9. Allard, B.,
    10. Mandel, J.-L. et al.
    (2009). T-tubule disorganization and defective excitation-contraction coupling in muscle fibers lacking myotubularin lipid phosphatase. Proc. Natl. Acad. Sci. USA 106, 18763-18768. doi:10.1073/pnas.0900705106
    OpenUrlAbstract/FREE Full Text
  6. ↵
    1. Ammann, S.,
    2. Schulz, A.,
    3. Krageloh-Mann, I.,
    4. Dieckmann, N. M.,
    5. Niethammer, K.,
    6. Fuchs, S.,
    7. Eckl, K. M.,
    8. Plank, R.,
    9. Werner, R.,
    10. Altmuller, J. et al.
    (2016). Mutations in AP3D1 associated with immunodeficiency and seizures define a new type of Hermansky-Pudlak syndrome. Blood 127, 997-1006. doi:10.1182/blood-2015-09-671636
    OpenUrlAbstract/FREE Full Text
  7. ↵
    1. Anantharam, A. and
    2. Kreutzberger, A. J. B.
    (2019). Unraveling the mechanisms of calcium-dependent secretion. J. Gen. Physiol. 151, 417-434. doi:10.1085/jgp.201812298
    OpenUrlAbstract/FREE Full Text
  8. ↵
    1. Anikster, Y.,
    2. Huizing, M.,
    3. White, J.,
    4. Shevchenko, Y. O.,
    5. Fitzpatrick, D. L.,
    6. Touchman, J. W.,
    7. Compton, J. G.,
    8. Bale, S. J.,
    9. Swank, R. T.,
    10. Gahl, W. A. et al.
    (2001). Mutation of a new gene causes a unique form of Hermansky-Pudlak syndrome in a genetic isolate of central Puerto Rico. Nat. Genet. 28, 376-380. doi:10.1038/ng576
    OpenUrlCrossRefPubMedWeb of Science
    1. Assoum, M.,
    2. Philippe, C.,
    3. Isidor, B.,
    4. Perrin, L.,
    5. Makrythanasis, P.,
    6. Sondheimer, N.,
    7. Paris, C.,
    8. Douglas, J.,
    9. Lesca, G.,
    10. Antonarakis, S. et al
    . (2016). Autosomal-recessive mutations in AP3B2, adaptor-related protein complex 3 Beta 2 subunit, cause an early-onset epileptic encephalopathy with optic atrophy. Am. J. Hum. Genet. 99, 1368-1376. doi:10.1016/j.ajhg.2016.10.009
    OpenUrlCrossRef
  9. ↵
    1. Attree, O.,
    2. Olivos, I. M.,
    3. Okabe, I.,
    4. Bailey, L. C.,
    5. Nelson, D. L.,
    6. Lewis, R. A.,
    7. McInnes, R. R. and
    8. Nussbaum, R. L.
    (1992). The Lowe's oculocerebrorenal syndrome gene encodes a protein highly homologous to inositol polyphosphate-5-phosphatase. Nature 358, 239-242. doi:10.1038/358239a0
    OpenUrlCrossRefPubMedWeb of Science
  10. ↵
    1. Avior, Y.,
    2. Sagi, I. and
    3. Benvenisty, N.
    (2016). Pluripotent stem cells in disease modelling and drug discovery. Nat. Rev. Mol. Cell Biol. 17, 170-182. doi:10.1038/nrm.2015.27
    OpenUrlCrossRefPubMed
  11. ↵
    1. Azzedine, H.,
    2. Bolino, A.,
    3. Taieb, T.,
    4. Birouk, N.,
    5. Di Duca, M.,
    6. Bouhouche, A.,
    7. Benamou, S.,
    8. Mrabet, A.,
    9. Hammadouche, T.,
    10. Chkili, T. et al.
    (2003). Mutations in MTMR13, a new pseudophosphatase homologue of MTMR2 and Sbf1, in two families with an autosomal recessive demyelinating form of Charcot-Marie-Tooth disease associated with early-onset glaucoma. Am. J. Hum. Genet. 72, 1141-1153. doi:10.1086/375034
    OpenUrlCrossRefPubMedWeb of Science
  12. ↵
    1. Balasubramanian, M.,
    2. Hurst, J.,
    3. Brown, S.,
    4. Bishop, N. J.,
    5. Arundel, P.,
    6. DeVile, C.,
    7. Pollitt, R. C.,
    8. Crooks, L.,
    9. Longman, D.,
    10. Caceres, J. F. et al.
    (2017). Compound heterozygous variants in NBAS as a cause of atypical osteogenesis imperfecta. Bone 94, 65-74. doi:10.1016/j.bone.2016.10.023
    OpenUrlCrossRef
    1. Balch, W. E.,
    2. Dunphy, W. G.,
    3. Braell, W. A. and
    4. Rothman, J. E.
    (1984). Reconstitution of the transport of protein between successive compartments of the Golgi measured by the coupled incorporation of N-acetylglucosamine. Cell 39, 405-416. doi:10.1016/0092-8674(84)90019-9
    OpenUrlCrossRefPubMedWeb of Science
    1. Baldassarre, T.,
    2. Watt, K.,
    3. Truesdell, P.,
    4. Meens, J.,
    5. Schneider, M. M.,
    6. Sengupta, S. K. and
    7. Craig, A. W
    . (2015). Endophilin A2 promotes TNBC cell invasion and tumor metastasis. Mol. Cancer Res. 13, 1044-1055. doi:10.1158/1541-7786.MCR-14-0573
    OpenUrlAbstract/FREE Full Text
  13. ↵
    1. Balendra, R. and
    2. Isaacs, A. M.
    (2018). C9orf72-mediated ALS and FTD: multiple pathways to disease. Nat. Rev. Neurol. 14, 544-558. doi:10.1038/s41582-018-0047-2
    OpenUrlCrossRefPubMed
  14. ↵
    1. Bansal, D.,
    2. Miyake, K.,
    3. Vogel, S. S.,
    4. Groh, S.,
    5. Chen, C. C.,
    6. Williamson, R.,
    7. McNeil, P. L. and
    8. Campbell, K. P.
    (2003). Defective membrane repair in dysferlin-deficient muscular dystrophy. Nature 423, 168-172. doi:10.1038/nature01573
    OpenUrlCrossRefPubMedWeb of Science
  15. ↵
    1. Barresi, R. and
    2. Campbell, K. P.
    (2006). Dystroglycan: from biosynthesis to pathogenesis of human disease. J. Cell Sci. 119, 199-207. doi:10.1242/jcs.02814
    OpenUrlAbstract/FREE Full Text
  16. ↵
    1. Barrowman, J.,
    2. Bhandari, D.,
    3. Reinisch, K. and
    4. Ferro-Novick, S.
    (2010). TRAPP complexes in membrane traffic: convergence through a common Rab. Nat. Rev. Mol. Cell Biol. 11, 759-763. doi:10.1038/nrm2999
    OpenUrlCrossRefPubMed
    1. Basel-Vanagaite, L.,
    2. Sarig, O.,
    3. Hershkovitz, D.,
    4. Fuchs-Telem, D.,
    5. Rapaport, D.,
    6. Gat, A.,
    7. Isman, G.,
    8. Shirazi, I.,
    9. Shohat, M.,
    10. Enk, C. D. et al
    . (2009). RIN2 deficiency results in macrocephaly, alopecia, cutis laxa, and scoliosis: MACS syndrome. Am. J. Hum. Genet. 85, 254-263. doi:10.1016/j.ajhg.2009.07.001
    OpenUrlCrossRefPubMed
  17. ↵
    1. Bashir, R.,
    2. Britton, S.,
    3. Strachan, T.,
    4. Keers, S.,
    5. Vafiadaki, E.,
    6. Lako, M.,
    7. Richard, I.,
    8. Marchand, S.,
    9. Bourg, N.,
    10. Argov, Z. et al.
    (1998). A gene related to Caenorhabditis elegans spermatogenesis factor fer-1 is mutated in limb-girdle muscular dystrophy type 2B. Nat. Genet. 20, 37-42. doi:10.1038/1689
    OpenUrlCrossRefPubMedWeb of Science
  18. ↵
    1. Bauer, P.,
    2. Leshinsky-Silver, E.,
    3. Blumkin, L.,
    4. Schlipf, N.,
    5. Schröder, C.,
    6. Schicks, J.,
    7. Lev, D.,
    8. Riess, O.,
    9. Lerman-Sagie, T. and
    10. Schöls, L.
    (2012). Mutation in the AP4B1 gene cause hereditary spastic paraplegia type 47 (SPG47). Neurogenetics 13, 73-76. doi:10.1007/s10048-012-0314-0
    OpenUrlCrossRefPubMedWeb of Science
    1. Baulac, S.,
    2. Lenk, G. M.,
    3. Dufresnois, B.,
    4. Ouled Amar Bencheikh, B.,
    5. Couarch, P.,
    6. Renard, J.,
    7. Larson, P. A.,
    8. Ferguson, C. J.,
    9. Noe, E.,
    10. Poirier, K. et al.
    (2014). Role of the phosphoinositide phosphatase FIG4 gene in familial epilepsy with polymicrogyria. Neurology 82, 1068-1075. doi:10.1212/WNL.0000000000000241
    OpenUrlCrossRefPubMed
  19. ↵
    1. Beck, R.,
    2. Rawet, M.,
    3. Wieland, F. T. and
    4. Cassel, D.
    (2009). The COPI system: molecular mechanisms and function. FEBS Lett. 583, 2701-2709. doi:10.1016/j.febslet.2009.07.032
    OpenUrlCrossRefPubMedWeb of Science
  20. ↵
    1. Beetz, C.,
    2. Johnson, A.,
    3. Schuh, A. L.,
    4. Thakur, S.,
    5. Varga, R. E.,
    6. Fothergill, T.,
    7. Hertel, N.,
    8. Bomba-Warczak, E.,
    9. Thiele, H.,
    10. Nurnberg, G. et al.
    (2013). Inhibition of TFG function causes hereditary axon degeneration by impairing endoplasmic reticulum structure. Proc. Natl. Acad. Sci. USA 110, 5091-5096. doi:10.1073/pnas.1217197110
    OpenUrlAbstract/FREE Full Text
    1. Bem, D.,
    2. Yoshimura, S.-I.,
    3. Nunes-Bastos, R.,
    4. Bond, F. F.,
    5. Kurian, M. A.,
    6. Rahman, F.,
    7. Handley, M. T. W.,
    8. Hadzhiev, Y.,
    9. Masood, I.,
    10. Straatman-Iwanowska, A. A. et al
    . (2011). Loss-of-function mutations in RAB18 cause Warburg Micro syndrome. Am. J. Hum. Genet. 88, 499-507. doi:10.1016/j.ajhg.2011.03.012
    OpenUrlCrossRefPubMed
    1. Ben-Chetrit, N.,
    2. Chetrit, D.,
    3. Russell, R.,
    4. Körner, C.,
    5. Mancini, M.,
    6. Abdul-Hai, A.,
    7. Itkin, T.,
    8. Carvalho, S.,
    9. Cohen-Dvashi, H.,
    10. Koestler, W. J. et al
    . (2015). Synaptojanin 2 is a druggable mediator of metastasis and the gene is overexpressed and amplified in breast cancer. Sci. Signal. 8, ra7. doi:10.1126/scisignal.2005537
    OpenUrlAbstract/FREE Full Text
  21. ↵
    1. Bianchi, P.,
    2. Fermo, E.,
    3. Vercellati, C.,
    4. Boschetti, C.,
    5. Barcellini, W.,
    6. Iurlo, A.,
    7. Marcello, A. P.,
    8. Righetti, P. G. and
    9. Zanella, A.
    (2009). Congenital dyserythropoietic anemia type II (CDAII) is caused by mutations in the SEC23B gene. Hum. Mutat. 30, 1292-1298. doi:10.1002/humu.21077
    OpenUrlCrossRefPubMedWeb of Science
    1. Bienvenu, T.,
    2. des Portes, V.,
    3. Saint Martin, A.,
    4. McDonell, N.,
    5. Billuart, P.,
    6. Carrie, A.,
    7. Vinet, M. C.,
    8. Couvert, P.,
    9. Toniolo, D.,
    10. Ropers, H. H. et al
    . (1998). Non-specific X-linked semidominant mental retardation by mutations in a Rab GDP-dissociation inhibitor. Hum. Mol. Genet. 7, 1311-1315. doi:10.1093/hmg/7.8.1311
    OpenUrlCrossRefPubMed
  22. ↵
    1. Bitoun, M.,
    2. Maugenre, S.,
    3. Jeannet, P. Y.,
    4. Lacene, E.,
    5. Ferrer, X.,
    6. Laforet, P.,
    7. Martin, J. J.,
    8. Laporte, J.,
    9. Lochmuller, H.,
    10. Beggs, A. H. et al.
    (2005). Mutations in dynamin 2 cause dominant centronuclear myopathy. Nat. Genet. 37, 1207-1209. doi:10.1038/ng1657
    OpenUrlCrossRefPubMedWeb of Science
  23. ↵
    1. Blackstone, C.,
    2. O'Kane, C. J. and
    3. Reid, E.
    (2011). Hereditary spastic paraplegias: membrane traffic and the motor pathway. Nat. Rev. Neurosci. 12, 31-42. doi:10.1038/nrn2946
    OpenUrlCrossRefPubMedWeb of Science
  24. ↵
    1. Bolino, A.,
    2. Muglia, M.,
    3. Conforti, F. L.,
    4. LeGuern, E.,
    5. Salih, M. A.,
    6. Georgiou, D. M.,
    7. Christodoulou, K.,
    8. Hausmanowa-Petrusewicz, I.,
    9. Mandich, P.,
    10. Schenone, A. et al.
    (2000). Charcot-Marie-Tooth type 4B is caused by mutations in the gene encoding myotubularin-related protein-2. Nat. Genet. 25, 17-19. doi:10.1038/75542
    OpenUrlCrossRefPubMedWeb of Science
  25. ↵
    1. Boncompain, G.,
    2. Divoux, S.,
    3. Gareil, N.,
    4. de Forges, H.,
    5. Lescure, A.,
    6. Latreche, L.,
    7. Mercanti, V.,
    8. Jollivet, F.,
    9. Raposo, G. and
    10. Perez, F.
    (2012). Synchronization of secretory protein traffic in populations of cells. Nat. Methods 9, 493-498. doi:10.1038/nmeth.1928
    OpenUrlCrossRefPubMedWeb of Science
  26. ↵
    1. Bögershausen, N.,
    2. Shahrzad, N.,
    3. Chong, J. X.,
    4. von Kleist-Retzow, J.-C.,
    5. Stanga, D.,
    6. Li, Y.,
    7. Bernier, F. P.,
    8. Loucks, C. M.,
    9. Wirth, R.,
    10. Puffenberger, E. G. et al
    . (2013). Recessive TRAPPC11 mutations cause a disease spectrum of limb girdle muscular dystrophy and myopathy with movement disorder and intellectual disability. Am. J. Hum. Genet. 93, 181-190. doi:10.1016/j.ajhg.2013.05.028
    OpenUrlCrossRefPubMed
    1. Borck, G.,
    2. Wunram, H.,
    3. Steiert, A.,
    4. Volk, A. E.,
    5. Korber, F.,
    6. Roters, S.,
    7. Herkenrath, P.,
    8. Wollnik, B.,
    9. Morris-Rosendahl, D. J. and
    10. Kubisch, C
    . (2011). A homozygous RAB3GAP2 mutation causes Warburg Micro syndrome. Hum. Genet. 129, 45-50. doi:10.1007/s00439-010-0896-2
    OpenUrlCrossRefPubMed
    1. Bourassa, C. V.,
    2. Meijer, I. A.,
    3. Merner, N. D.,
    4. Grewal, K. K.,
    5. Stefanelli, M. G.,
    6. Hodgkinson, K.,
    7. Ives, E. J.,
    8. Pryse-Phillips, W.,
    9. Jog, M.,
    10. Boycott, K. et al
    . (2012). VAMP1 mutation causes dominant hereditary spastic ataxia in Newfoundland families. Am. J. Hum. Genet. 91, 548-552. doi:10.1016/j.ajhg.2012.07.018
    OpenUrlCrossRefPubMed
  27. ↵
    1. Boyadjiev, S. A.,
    2. Fromme, J. C.,
    3. Ben, J.,
    4. Chong, S. S.,
    5. Nauta, C.,
    6. Hur, D. J.,
    7. Zhang, G.,
    8. Hamamoto, S.,
    9. Schekman, R.,
    10. Ravazzola, M. et al.
    (2006). Cranio-lenticulo-sutural dysplasia is caused by a SEC23A mutation leading to abnormal endoplasmic-reticulum-to-Golgi trafficking. Nat. Genet. 38, 1192-1197. doi:10.1038/ng1876
    OpenUrlCrossRefPubMedWeb of Science
  28. ↵
    1. Boyadjiev, S. A.,
    2. Kim, S. D.,
    3. Hata, A.,
    4. Haldeman-Englert, C.,
    5. Zackai, E. H.,
    6. Naydenov, C.,
    7. Hamamoto, S.,
    8. Schekman, R. W. and
    9. Kim, J.
    (2011). Cranio-lenticulo-sutural dysplasia associated with defects in collagen secretion. Clin. Genet. 80, 169-176. doi:10.1111/j.1399-0004.2010.01550.x
    OpenUrlCrossRefPubMed
  29. ↵
    1. Brandizzi, F. and
    2. Barlowe, C.
    (2013). Organization of the ER-Golgi interface for membrane traffic control. Nat. Rev. Mol. Cell Biol. 14, 382-392. doi:10.1038/nrm3588
    OpenUrlCrossRefPubMed
  30. ↵
    1. Branon, T. C.,
    2. Bosch, J. A.,
    3. Sanchez, A. D.,
    4. Udeshi, N. D.,
    5. Svinkina, T.,
    6. Carr, S. A.,
    7. Feldman, J. L.,
    8. Perrimon, N. and
    9. Ting, A. Y.
    (2018). Efficient proximity labeling in living cells and organisms with TurboID. Nat. Biotechnol. 36, 880-887. doi:10.1038/nbt.4201
    OpenUrlCrossRefPubMed
  31. ↵
    1. Brown, M. S. and
    2. Goldstein, J. L.
    (1986). A receptor-mediated pathway for cholesterol homeostasis. Science 232, 34-47. doi:10.1126/science.3513311
    OpenUrlFREE Full Text
  32. ↵
    1. Buj-Bello, A.,
    2. Biancalana, V.,
    3. Moutou, C.,
    4. Laporte, J. and
    5. Mandel, J. L.
    (1999). Identification of novel mutations in the MTM1 gene causing severe and mild forms of X-linked myotubular myopathy. Hum. Mutat. 14, 320-325. doi:10.1002/(SICI)1098-1004(199910)14:4<320::AID-HUMU7>3.0.CO;2-O
    OpenUrlCrossRefPubMedWeb of Science
  33. ↵
    1. Burre, J.,
    2. Sharma, M.,
    3. Tsetsenis, T.,
    4. Buchman, V.,
    5. Etherton, M. R. and
    6. Südhof, T. C.
    (2010). Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 329, 1663-1667. doi:10.1126/science.1195227
    OpenUrlAbstract/FREE Full Text
    1. Byrne, J. A.,
    2. Tomasetto, C.,
    3. Garnier, J. M.,
    4. Rouyer, N.,
    5. Mattei, M. G.,
    6. Bellocq, J. P.,
    7. Rio, M. C. and
    8. Basset, P
    . (1995). A screening method to identify genes commonly overexpressed in carcinomas and the identification of a novel complementary DNA sequence. Cancer Res. 55, 2896-2903.
    OpenUrlAbstract/FREE Full Text
    1. Byrne, J. A.,
    2. Mattei, M.-G. and
    3. Basset, P
    . (1996). Definition of the tumor protein D52 (TPD52) gene family through cloning of D52 homologues in human (hD53) and mouse (mD52). Genomics 35, 523-532. doi:10.1006/geno.1996.0393
    OpenUrlCrossRefPubMedWeb of Science
    1. Byrne, J. A.,
    2. Nourse, C. R.,
    3. Basset, P. and
    4. Gunning, P
    . (1998). Identification of homo- and heteromeric interactions between members of the breast carcinoma-associated D52 protein family using the yeast two-hybrid system. Oncogene 16, 873-881. doi:10.1038/sj.onc.1201604
    OpenUrlCrossRefPubMedWeb of Science
    1. Cai, X.,
    2. Chen, X.,
    3. Wu, S.,
    4. Liu, W.,
    5. Zhang, X.,
    6. Zhang, D.,
    7. He, S.,
    8. Wang, B.,
    9. Zhang, M.,
    10. Zhang, Y. et al
    . (2016). Homozygous mutation of VPS16 gene is responsible for an autosomal recessive adolescent-onset primary dystonia. Sci. Rep. 6, 25834. doi:10.1038/srep25834
    OpenUrlCrossRef
    1. Campeau, P. M.,
    2. Lenk, G. M.,
    3. Lu, J. T.,
    4. Bae, Y.,
    5. Burrage, L.,
    6. Turnpenny, P.,
    7. Roman Corona-Rivera, J.,
    8. Morandi, L.,
    9. Mora, M.,
    10. Reutter, H. et al
    . (2013). Yunis-Varon syndrome is caused by mutations in FIG4, encoding a phosphoinositide phosphatase. Am. J. Hum. Genet. 92, 781-791. doi:10.1016/j.ajhg.2013.03.020
    OpenUrlCrossRefPubMed
  34. ↵
    1. Carstea, E. D.,
    2. Morris, J. A.,
    3. Coleman, K. G.,
    4. Loftus, S. K.,
    5. Zhang, D.,
    6. Cummings, C.,
    7. Gu, J.,
    8. Rosenfeld, M. A.,
    9. Pavan, W. J.,
    10. Krizman, D. B. et al.
    (1997). Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science 277, 228-231. doi:10.1126/science.277.5323.228
    OpenUrlAbstract/FREE Full Text
  35. ↵
    1. Centonze, F. G.,
    2. Reiterer, V.,
    3. Nalbach, K.,
    4. Saito, K.,
    5. Pawlowski, K.,
    6. Behrends, C. and
    7. Farhan, H.
    (2019). LTK is an ER-resident receptor tyrosine kinase that regulates secretion. J. Cell Biol. 218, 2470-2480. doi:10.1083/jcb.201903068
    OpenUrlAbstract/FREE Full Text
  36. ↵
    1. Chan, W. L.,
    2. Steiner, M.,
    3. Witkos, T.,
    4. Egerer, J.,
    5. Busse, B.,
    6. Mizumoto, S.,
    7. Pestka, J. M.,
    8. Zhang, H.,
    9. Hausser, I.,
    10. Khayal, L. A. et al.
    (2018). Impaired proteoglycan glycosylation, elevated TGF-β signaling, and abnormal osteoblast differentiation as the basis for bone fragility in a mouse model for gerodermia osteodysplastica. PLoS Genet. 14, e1007242. doi:10.1371/journal.pgen.1007242
    OpenUrlCrossRef
  37. ↵
    1. Chandra, S.,
    2. Gallardo, G.,
    3. Fernández-Chacón, R.,
    4. Schlüter, O. M. and
    5. Südhof, T. C.
    (2005). Alpha-synuclein cooperates with CSPalpha in preventing neurodegeneration. Cell 123, 383-396. doi:10.1016/j.cell.2005.09.028
    OpenUrlCrossRefPubMedWeb of Science
  38. ↵
    1. Chang, W.-L.,
    2. Chang, C.-W.,
    3. Chang, Y.-Y.,
    4. Sung, H.-H.,
    5. Lin, M.-D.,
    6. Chang, S.-C.,
    7. Chen, C.-H.,
    8. Huang, C.-W.,
    9. Tung, K.-S. and
    10. Chou, T.-B.
    (2013). The Drosophila GOLPH3 homolog regulates the biosynthesis of heparan sulfate proteoglycans by modulating the retrograde trafficking of exostosins. Development 140, 2798-2807. doi:10.1242/dev.087171
    OpenUrlAbstract/FREE Full Text
    1. Chen, Q.,
    2. He, G.,
    3. Qin, W.,
    4. Chen, Q.-Y.,
    5. Zhao, X.-Z.,
    6. Duan, S.-W.,
    7. Liu, X.-M.,
    8. Feng, G.-Y.,
    9. Xu, Y.-F.,
    10. St Clair, D. et al
    . (2004). Family-based association study of synapsin II and schizophrenia. Am. J. Hum. Genet. 75, 873-877. doi:10.1086/425588
    OpenUrlCrossRefPubMedWeb of Science
  39. ↵
    1. Chen, D.,
    2. Gibson, E. S. and
    3. Kennedy, M. J.
    (2013). A light-triggered protein secretion system. J. Cell Biol. 201, 631-640. doi:10.1083/jcb.201210119
    OpenUrlAbstract/FREE Full Text
    1. Cheng, K. W.,
    2. Lahad, J. P.,
    3. Kuo, W.-L.,
    4. Lapuk, A.,
    5. Yamada, K.,
    6. Auersperg, N.,
    7. Liu, J.,
    8. Smith-McCune, K.,
    9. Lu, K. H.,
    10. Fishman, D. et al
    . (2004). The RAB25 small GTPase determines aggressiveness of ovarian and breast cancers. Nat. Med. 10, 1251-1256. doi:10.1038/nm1125
    OpenUrlCrossRefPubMedWeb of Science
  40. ↵
    1. Chin, Y. H.,
    2. Lee, A.,
    3. Kan, H. W.,
    4. Laiman, J.,
    5. Chuang, M. C.,
    6. Hsieh, S. T. and
    7. Liu, Y. W.
    (2015). Dynamin-2 mutations associated with centronuclear myopathy are hypermorphic and lead to T-tubule fragmentation. Hum. Mol. Genet. 24, 5542-5554. doi:10.1093/hmg/ddv285
    OpenUrlCrossRefPubMed
  41. ↵
    1. Chow, C. Y.,
    2. Landers, J. E.,
    3. Bergren, S. K.,
    4. Sapp, P. C.,
    5. Grant, A. E.,
    6. Jones, J. M.,
    7. Everett, L.,
    8. Lenk, G. M.,
    9. McKenna-Yasek, D. M.,
    10. Weisman, L. S. et al.
    (2009). Deleterious variants of FIG4, a phosphoinositide phosphatase, in patients with ALS. Am. J. Hum. Genet. 84, 85-88. doi:10.1016/j.ajhg.2008.12.010
    OpenUrlCrossRefPubMedWeb of Science
  42. ↵
    1. Christ, L.,
    2. Raiborg, C.,
    3. Wenzel, E. M.,
    4. Campsteijn, C. and
    5. Stenmark, H.
    (2017). Cellular functions and molecular mechanisms of the ESCRT membrane-scission machinery. Trends Biochem. Sci. 42, 42-56. doi:10.1016/j.tibs.2016.08.016
    OpenUrlCrossRefPubMed
  43. ↵
    1. Cooper, A. A.,
    2. Gitler, A. D.,
    3. Cashikar, A.,
    4. Haynes, C. M.,
    5. Hill, K. J.,
    6. Bhullar, B.,
    7. Liu, K.,
    8. Xu, K.,
    9. Strathearn, K. E.,
    10. Liu, F. et al.
    (2006). Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson's models. Science 313, 324-328. doi:10.1126/science.1129462
    OpenUrlAbstract/FREE Full Text
    1. Corbett, M. A.,
    2. Schwake, M.,
    3. Bahlo, M.,
    4. Dibbens, L. M.,
    5. Lin, M.,
    6. Gandolfo, L. C.,
    7. Vears, D. F.,
    8. O'Sullivan, J. D.,
    9. Robertson, T.,
    10. Bayly, M. A. et al
    . (2011). A mutation in the Golgi Qb-SNARE gene GOSR2 causes progressive myoclonus epilepsy with early ataxia. Am. J. Hum. Genet. 88, 657-663. doi:10.1016/j.ajhg.2011.04.011
    OpenUrlCrossRefPubMed
  44. ↵
    1. Cremers, F. P.,
    2. Armstrong, S. A.,
    3. Seabra, M. C.,
    4. Brown, M. S. and
    5. Goldstein, J. L.
    (1994). REP-2, a Rab escort protein encoded by the choroideremia-like gene. J. Biol. Chem. 269, 2111-2117.
    OpenUrlAbstract/FREE Full Text
  45. ↵
    1. Cullen, P. J. and
    2. Steinberg, F.
    (2018). To degrade or not to degrade: mechanisms and significance of endocytic recycling. Nat. Rev. Mol. Cell Biol. 19, 679-696. doi:10.1038/s41580-018-0053-7
    OpenUrlCrossRef
    1. Cullinane, A. R.,
    2. Straatman-Iwanowska, A.,
    3. Zaucker, A.,
    4. Wakabayashi, Y.,
    5. Bruce, C. K.,
    6. Luo, G.,
    7. Rahman, F.,
    8. Gürakan, F.,
    9. Utine, E.,
    10. Özkan, T. B. et al
    . (2010). Mutations in VIPAR cause an arthrogryposis, renal dysfunction and cholestasis syndrome phenotype with defects in epithelial polarization. Nat. Genet. 42, 303-312. doi:10.1038/ng.538
    OpenUrlCrossRefPubMed
    1. D'Adamo, P.,
    2. Menegon, A.,
    3. Lo Nigro, C.,
    4. Grasso, M.,
    5. Gulisano, M.,
    6. Tamanini, F.,
    7. Bienvenu, T.,
    8. Gedeon, A. K.,
    9. Oostra, B.,
    10. Wu, S. K. et al
    . (1998). Mutations in GDI1 are responsible for X-linked non-specific mental retardation. Nat. Genet. 19, 134-139. doi:10.1038/487
    OpenUrlCrossRefPubMedWeb of Science
    1. Damseh, N.,
    2. Danson, C. M.,
    3. Al-Ashhab, M.,
    4. Abu-Libdeh, B.,
    5. Gallon, M.,
    6. Sharma, K.,
    7. Yaacov, B.,
    8. Coulthard, E.,
    9. Caldwell, M. A.,
    10. Edvardson, S. et al
    . (2015). A defect in the retromer accessory protein, SNX27, manifests by infantile myoclonic epilepsy and neurodegeneration. Neurogenetics 16, 215-221. doi:10.1007/s10048-015-0446-0
    OpenUrlCrossRefPubMed
  46. ↵
    1. Davidson, G. P.,
    2. Cutz, E.,
    3. Hamilton, J. R. and
    4. Gall, D. G.
    (1978). Familial enteropathy: a syndrome of protracted diarrhea from birth, failure to thrive, and hypoplastic villus atrophy. Gastroenterology 75, 783-790. doi:10.1016/0016-5085(78)90458-4
    OpenUrlCrossRefPubMedWeb of Science
  47. ↵
    1. Davies, A. K.,
    2. Itzhak, D. N.,
    3. Edgar, J. R.,
    4. Archuleta, T. L.,
    5. Hirst, J.,
    6. Jackson, L. P.,
    7. Robinson, M. S. and
    8. Borner, G. H. H.
    (2018). AP-4 vesicles contribute to spatial control of autophagy via RUSC-dependent peripheral delivery of ATG9A. Nat. Commun. 9, 3958. doi:10.1038/s41467-018-06172-7
    OpenUrlCrossRefPubMed
  48. ↵
    1. Davis, C. G.,
    2. Lehrman, M. A.,
    3. Russell, D. W.,
    4. Anderson, R. G.,
    5. Brown, M. S. and
    6. Goldstein, J. L.
    (1986). The J.D. mutation in familial hypercholesterolemia: amino acid substitution in cytoplasmic domain impedes internalization of LDL receptors. Cell 45, 15-24. doi:10.1016/0092-8674(86)90533-7
    OpenUrlCrossRefPubMedWeb of Science
  49. ↵
    1. De Matteis, M. A. and
    2. Luini, A.
    (2008). Exiting the Golgi complex. Nat. Rev. Mol. Cell Biol. 9, 273-284. doi:10.1038/nrm2378
    OpenUrlCrossRefPubMedWeb of Science
  50. ↵
    1. De Matteis, M. A.,
    2. Staiano, L.,
    3. Emma, F. and
    4. Devuyst, O.
    (2017). The 5-phosphatase OCRL in Lowe syndrome and Dent disease 2. Nat. Rev. Nephrol. 13, 455-470. doi:10.1038/nrneph.2017.83
    OpenUrlCrossRef
  51. ↵
    1. Dehay, B.,
    2. Martinez-Vicente, M.,
    3. Caldwell, G. A.,
    4. Caldwell, K. A.,
    5. Yue, Z.,
    6. Cookson, M. R.,
    7. Klein, C.,
    8. Vila, M. and
    9. Bezard, E.
    (2013). Lysosomal impairment in Parkinson's disease. Mov. Disord. 28, 725-732. doi:10.1002/mds.25462
    OpenUrlCrossRefPubMed
  52. ↵
    1. Dejeans, N.,
    2. Manié, S.,
    3. Hetz, C.,
    4. Bard, F.,
    5. Hupp, T.,
    6. Agostinis, P.,
    7. Samali, A. and
    8. Chevet, E.
    (2014). Addicted to secrete - novel concepts and targets in cancer therapy. Trends Mol. Med. 20, 242-250. doi:10.1016/j.molmed.2013.12.003
    OpenUrlCrossRefPubMedWeb of Science
  53. ↵
    1. DeJesus-Hernandez, M.,
    2. Mackenzie, I. R.,
    3. Boeve, B. F.,
    4. Boxer, A. L.,
    5. Baker, M.,
    6. Rutherford, N. J.,
    7. Nicholson, A. M.,
    8. Finch, N. A.,
    9. Flynn, H.,
    10. Adamson, J. et al.
    (2011). Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245-256. doi:10.1016/j.neuron.2011.09.011
    OpenUrlCrossRefPubMedWeb of Science
  54. ↵
    1. Dell'Angelica, E. C.,
    2. Shotelersuk, V.,
    3. Aguilar, R. C.,
    4. Gahl, W. A. and
    5. Bonifacino, J. S.
    (1999). Altered trafficking of lysosomal proteins in Hermansky-Pudlak syndrome due to mutations in the β3A subunit of the AP-3 adaptor. Mol. Cell 3, 11-21. doi:10.1016/S1097-2765(00)80170-7
    OpenUrlCrossRefPubMedWeb of Science
  55. ↵
    1. Denecke, J. and
    2. Marquardt, T.
    (2009). Congenital dyserythropoietic anemia type II (CDAII/HEMPAS): where are we now? Biochim. Biophys. Acta 1792, 915-920. doi:10.1016/j.bbadis.2008.12.005
    OpenUrlCrossRefPubMed
  56. ↵
    1. di Ronza, A.,
    2. Bajaj, L.,
    3. Sharma, J.,
    4. Sanagasetti, D.,
    5. Lotfi, P.,
    6. Adamski, C. J.,
    7. Collette, J.,
    8. Palmieri, M.,
    9. Amawi, A.,
    10. Popp, L. et al.
    (2018). CLN8 is an endoplasmic reticulum cargo receptor that regulates lysosome biogenesis. Nat. Cell Biol. 20, 1370-1377. doi:10.1038/s41556-018-0228-7
    OpenUrlCrossRef
  57. ↵
    1. Dixon-Salazar, T. J.,
    2. Silhavy, J. L.,
    3. Udpa, N.,
    4. Schroth, J.,
    5. Bielas, S.,
    6. Schaffer, A. E.,
    7. Olvera, J.,
    8. Bafna, V.,
    9. Zaki, M. S.,
    10. Abdel-Salam, G. H. et al.
    (2012). Exome sequencing can improve diagnosis and alter patient management. Sci. Transl. Med. 4, 138ra78. doi:10.1126/scitranslmed.3003544
    OpenUrlAbstract/FREE Full Text
  58. ↵
    1. Dowling, J. J.,
    2. Vreede, A. P.,
    3. Low, S. E.,
    4. Gibbs, E. M.,
    5. Kuwada, J. Y.,
    6. Bonnemann, C. G. and
    7. Feldman, E. L.
    (2009). Loss of myotubularin function results in T-tubule disorganization in zebrafish and human myotubular myopathy. PLoS Genet. 5, e1000372. doi:10.1371/journal.pgen.1000372
    OpenUrlCrossRefPubMed
  59. ↵
    1. Dunbar, C. E.,
    2. High, K. A.,
    3. Joung, J. K.,
    4. Kohn, D. B.,
    5. Ozawa, K. and
    6. Sadelain, M.
    (2018). Gene therapy comes of age. Science 359, eaan4672. doi:10.1126/science.aan4672
    OpenUrlAbstract/FREE Full Text
  60. ↵
    1. Dupuis, N.,
    2. Lebon, S.,
    3. Kumar, M.,
    4. Drunat, S.,
    5. Graul-Neumann, L. M.,
    6. Gressens, P. and
    7. El Ghouzzi, V.
    (2013). A novel RAB33B mutation in smith–McCort dysplasia. Hum. Mutat. 34, 283-286. doi:10.1002/humu.22235
    OpenUrlCrossRefPubMed
  61. ↵
    1. Edvardson, S.,
    2. Cinnamon, Y.,
    3. Ta-Shma, A.,
    4. Shaag, A.,
    5. Yim, Y.-I.,
    6. Zenvirt, S.,
    7. Jalas, C.,
    8. Lesage, S.,
    9. Brice, A.,
    10. Taraboulos, A. et al.
    (2012). A deleterious mutation in DNAJC6 encoding the neuronal-specific clathrin-uncoating co-chaperone auxilin, is associated with juvenile parkinsonism. PLoS ONE 7, e36458. doi:10.1371/journal.pone.0036458
    OpenUrlCrossRefPubMed
    1. Edvardson, S.,
    2. Gerhard, F.,
    3. Jalas, C.,
    4. Lachmann, J.,
    5. Golan, D.,
    6. Saada, A.,
    7. Shaag, A.,
    8. Ungermann, C. and
    9. Elpeleg, O
    . (2015). Hypomyelination and developmental delay associated with VPS11 mutation in Ashkenazi-Jewish patients. J. Med. Genet. 52, 749-753. doi:10.1136/jmedgenet-2015-103239
    OpenUrlAbstract/FREE Full Text
  62. ↵
    1. Eichelbaum, K.,
    2. Winter, M.,
    3. Berriel Diaz, M.,
    4. Herzig, S. and
    5. Krijgsveld, J.
    (2012). Selective enrichment of newly synthesized proteins for quantitative secretome analysis. Nat. Biotechnol. 30, 984-990. doi:10.1038/nbt.2356
    OpenUrlCrossRefPubMed
    1. Elliott, A. M.,
    2. Simard, L. R.,
    3. Coghlan, G.,
    4. Chudley, A. E.,
    5. Chodirker, B. N.,
    6. Greenberg, C. R.,
    7. Burch, T.,
    8. Ly, V.,
    9. Hatch, G. M. and
    10. Zelinski, T
    . (2013). A novel mutation in KIAA0196: identification of a gene involved in Ritscher-Schinzel/3C syndrome in a First Nations cohort. J. Med. Genet. 50, 819-822. doi:10.1136/jmedgenet-2013-101715
    OpenUrlAbstract/FREE Full Text
    1. Eymard-Pierre, E.,
    2. Lesca, G.,
    3. Dollet, S.,
    4. Santorelli, F. M.,
    5. di Capua, M.,
    6. Bertini, E. and
    7. Boespflug-Tanguy, O
    . (2002). Infantile-onset ascending hereditary spastic paralysis is associated with mutations in the alsin gene. Am. J. Hum. Genet. 71, 518-527. doi:10.1086/342359
    OpenUrlCrossRefPubMedWeb of Science
    1. Fabrizi, G. M.,
    2. Ferrarini, M.,
    3. Cavallaro, T.,
    4. Cabrini, I.,
    5. Cerini, R.,
    6. Bertolasi, L. and
    7. Rizzuto, N
    . (2007). Two novel mutations in dynamin-2 cause axonal Charcot–Marie–Tooth disease. Neurology 69, 291-295. doi:10.1212/01.wnl.0000265820.51075.61
    OpenUrlAbstract/FREE Full Text
  63. ↵
    1. Farazi Fard, M. A.,
    2. Rebelo, A. P.,
    3. Buglo, E.,
    4. Nemati, H.,
    5. Dastsooz, H.,
    6. Gehweiler, I.,
    7. Reich, S.,
    8. Reichbauer, J.,
    9. Quintáns, B.,
    10. Ordóñez-Ugalde, A. et al.
    (2019). Truncating mutations in UBAP1 cause hereditary spastic paraplegia. Am. J. Hum. Genet. 104, 767-773. doi:10.1016/j.ajhg.2019.03.001
    OpenUrlCrossRef
  64. ↵
    1. Farber-Katz, S. E.,
    2. Dippold, H. C.,
    3. Buschman, M. D.,
    4. Peterman, M. C.,
    5. Xing, M.,
    6. Noakes, C. J.,
    7. Tat, J.,
    8. Ng, M. M.,
    9. Rahajeng, J.,
    10. Cowan, D. M. et al.
    (2014). DNA damage triggers Golgi dispersal via DNA-PK and GOLPH3. Cell 156, 413-427. doi:10.1016/j.cell.2013.12.023
    OpenUrlCrossRefPubMed
    1. Fassio, A.,
    2. Patry, L.,
    3. Congia, S.,
    4. Onofri, F.,
    5. Piton, A.,
    6. Gauthier, J.,
    7. Pozzi, D.,
    8. Messa, M.,
    9. Defranchi, E.,
    10. Fadda, M. et al
    . (2011). SYN1 loss-of-function mutations in autism and partial epilepsy cause impaired synaptic function. Hum. Mol. Genet. 20, 2297-2307. doi:10.1093/hmg/ddr122
    OpenUrlCrossRefPubMedWeb of Science
    1. Feinstein, M.,
    2. Flusser, H.,
    3. Lerman-Sagie, T.,
    4. Ben-Zeev, B.,
    5. Lev, D.,
    6. Agamy, O.,
    7. Cohen, I.,
    8. Kadir, R.,
    9. Sivan, S.,
    10. Leshinsky-Silver, E. et al
    . (2014). VPS53 mutations cause progressive cerebello-cerebral atrophy type 2 (PCCA2). J. Med. Genet. 51, 303-308. doi:10.1136/jmedgenet-2013-101823
    OpenUrlAbstract/FREE Full Text
  65. ↵
    1. Feldmann, J.,
    2. Callebaut, I.,
    3. Raposo, G.,
    4. Certain, S.,
    5. Bacq, D.,
    6. Dumont, C.,
    7. Lambert, N.,
    8. Ouachée-Chardin, M.,
    9. Chedeville, G.,
    10. Tamary, H. et al.
    (2003). Munc13-4 is essential for cytolytic granules fusion and is mutated in a form of familial hemophagocytic lymphohistiocytosis (FHL3). Cell 115, 461-473. doi:10.1016/S0092-8674(03)00855-9
    OpenUrlCrossRefPubMedWeb of Science
  66. ↵
    1. Feng, S.,
    2. Sekine, S.,
    3. Pessino, V.,
    4. Li, H.,
    5. Leonetti, M. D. and
    6. Huang, B.
    (2017). Improved split fluorescent proteins for endogenous protein labeling. Nat. Commun. 8, 370. doi:10.1038/s41467-017-00494-8
    OpenUrlCrossRefPubMed
  67. ↵
    1. Ferrari, R.,
    2. Kapogiannis, D.,
    3. Huey, E. D. and
    4. Momeni, P.
    (2011). FTD and ALS: a tale of two diseases. Curr. Alzheimer Res. 8, 273-294. doi:10.2174/156720511795563700
    OpenUrlCrossRefPubMedWeb of Science
    1. Ferreira, C. R.,
    2. Xia, Z.-J.,
    3. Clément, A.,
    4. Parry, D. A.,
    5. Davids, M.,
    6. Taylan, F.,
    7. Sharma, P.,
    8. Turgeon, C. T.,
    9. Blanco-Sánchez, B.,
    10. Ng, B. G. et al
    . (2018). A recurrent de novo heterozygous COG4 substitution leads to saul-wilson syndrome, disrupted vesicular trafficking, and altered proteoglycan glycosylation. Am. J. Hum. Genet. 103, 553-567. doi:10.1016/j.ajhg.2018.09.003
    OpenUrlCrossRef
  68. ↵
    1. Fisher, P. and
    2. Ungar, D.
    (2016). Bridging the gap between glycosylation and vesicle traffic. Front. Cell Dev. Biol. 4, 15. doi:10.3389/fcell.2016.00015
    OpenUrlCrossRefPubMed
  69. ↵
    1. FitzGerald, G.,
    2. Botstein, D.,
    3. Califf, R.,
    4. Collins, R.,
    5. Peters, K.,
    6. Van Bruggen, N. and
    7. Rader, D.
    (2018). The future of humans as model organisms. Science 361, 552-553. doi:10.1126/science.aau7779
    OpenUrlAbstract/FREE Full Text
  70. ↵
    1. Follit, J. A.,
    2. San Agustin, J. T.,
    3. Xu, F.,
    4. Jonassen, J. A.,
    5. Samtani, R.,
    6. Lo, C. W. and
    7. Pazour, G. J.
    (2008). The Golgin GMAP210/TRIP11 anchors IFT20 to the Golgi complex. PLoS Genet. 4, e1000315. doi:10.1371/journal.pgen.1000315
    OpenUrlCrossRefPubMed
    1. Foulquier, F.,
    2. Vasile, E.,
    3. Schollen, E.,
    4. Callewaert, N.,
    5. Raemaekers, T.,
    6. Quelhas, D.,
    7. Jaeken, J.,
    8. Mills, P.,
    9. Winchester, B.,
    10. Krieger, M. et al
    . (2006). Conserved oligomeric Golgi complex subunit 1 deficiency reveals a previously uncharacterized congenital disorder of glycosylation type II. Proc. Natl. Acad. Sci. USA 103, 3764-3769. doi:10.1073/pnas.0507685103
    OpenUrlAbstract/FREE Full Text
    1. Foulquier, F.,
    2. Ungar, D.,
    3. Reynders, E.,
    4. Zeevaert, R.,
    5. Mills, P.,
    6. Garcia-Silva, M. T.,
    7. Briones, P.,
    8. Winchester, B.,
    9. Morelle, W.,
    10. Krieger, M. et al
    . (2007). A new inborn error of glycosylation due to a Cog8 deficiency reveals a critical role for the Cog1-Cog8 interaction in COG complex formation. Hum. Mol. Genet. 16, 717-730. doi:10.1093/hmg/ddl476
    OpenUrlCrossRefPubMedWeb of Science
  71. ↵
    1. Fumagalli, M.,
    2. Camus, S. M.,
    3. Diekmann, Y.,
    4. Burke, A.,
    5. Camus, M. D.,
    6. Norman, P. J.,
    7. Joseph, A.,
    8. Abi-Rached, L.,
    9. Benazzo, A.,
    10. Rasteiro, R. et al.
    (2019). Genetic diversity of CHC22 clathrin impacts its function in glucose metabolism. Elife 8, e41517. doi:10.7554/eLife.41517.028
    OpenUrlCrossRef
    1. Garbes, L.,
    2. Kim, K.,
    3. Riess, A.,
    4. Hoyer-Kuhn, H.,
    5. Beleggia, F.,
    6. Bevot, A.,
    7. Kim, M. J.,
    8. Huh, Y. H.,
    9. Kweon, H. S.,
    10. Savarirayan, R. et al
    . (2015). Mutations in SEC24D, encoding a component of the COPII machinery, cause a syndromic form of osteogenesis imperfecta. Am. J. Hum. Genet. 96, 432-439. doi:10.1016/j.ajhg.2015.01.002
    OpenUrlCrossRefPubMed
  72. ↵
    1. Garcia, C. K.,
    2. Wilund, K.,
    3. Arca, M.,
    4. Zuliani, G.,
    5. Fellin, R.,
    6. Maioli, M.,
    7. Calandra, S.,
    8. Bertolini, S.,
    9. Cossu, F.,
    10. Grishin, N. et al.
    (2001). Autosomal recessive hypercholesterolemia caused by mutations in a putative LDL receptor adaptor protein. Science 292, 1394-1398. doi:10.1126/science.1060458
    OpenUrlAbstract/FREE Full Text
    1. Garcia, C. C.,
    2. Blair, H. J.,
    3. Seager, M.,
    4. Coulthard, A.,
    5. Tennant, S.,
    6. Buddles, M.,
    7. Curtis, A. and
    8. Goodship, J. A
    . (2004). Identification of a mutation in synapsin I, a synaptic vesicle protein, in a family with epilepsy. J. Med. Genet. 41, 183-186. doi:10.1136/jmg.2003.013680
    OpenUrlAbstract/FREE Full Text
    1. Ge, X.,
    2. Gong, H.,
    3. Dumas, K.,
    4. Litwin, J.,
    5. Phillips, J. J.,
    6. Waisfisz, Q.,
    7. Weiss, M. M.,
    8. Hendriks, Y.,
    9. Stuurman, K. E.,
    10. Nelson, S. F. et al
    . (2016). Missense-depleted regions in population exomes implicate ras superfamily nucleotide-binding protein alteration in patients with brain malformation. NPJ Genom. Med. 1, 16036. doi:10.1038/npjgenmed.2016.36
    OpenUrlCrossRef
  73. ↵
    1. Gedeon, A. K.,
    2. Colley, A.,
    3. Jamieson, R.,
    4. Thompson, E. M.,
    5. Rogers, J.,
    6. Sillence, D.,
    7. Tiller, G. E.,
    8. Mulley, J. C. and
    9. Gécz, J.
    (1999). Identification of the gene (SEDL) causing X-linked spondyloepiphyseal dysplasia tarda. Nat. Genet. 22, 400-404. doi:10.1038/11976
    OpenUrlCrossRefPubMedWeb of Science
    1. Gershlick, D. C.,
    2. Ishida, M.,
    3. Jones, J. R.,
    4. Bellomo, A.,
    5. Bonifacino, J. S. and
    6. Everman, D. B
    . (2019). A neurodevelopmental disorder caused by mutations in the VPS51 subunit of the GARP and EARP complexes. Hum. Mol. Genet. 28, 1548-1560. doi:10.1093/hmg/ddy423
    OpenUrlCrossRef
  74. ↵
    1. Gholam, C.,
    2. Grigoriadou, S.,
    3. Gilmour, K. C. and
    4. Gaspar, H. B.
    (2011). Familial haemophagocytic lymphohistiocytosis: advances in the genetic basis, diagnosis and management. Clin. Exp. Immunol. 163, 271-283. doi:10.1111/j.1365-2249.2010.04302.x
    OpenUrlCrossRefPubMed
  75. ↵
    1. Giannandrea, M.,
    2. Bianchi, V.,
    3. Mignogna, M. L.,
    4. Sirri, A.,
    5. Carrabino, S.,
    6. D'Elia, E.,
    7. Vecellio, M.,
    8. Russo, S.,
    9. Cogliati, F.,
    10. Larizza, L. et al.
    (2010). Mutations in the small GTPase gene RAB39B are responsible for X-linked mental retardation associated with autism, epilepsy, and macrocephaly. Am. J. Hum. Genet. 86, 185-195. doi:10.1016/j.ajhg.2010.01.011
    OpenUrlCrossRefPubMed
  76. ↵
    1. Gil-Krzewska, A.,
    2. Wood, S. M.,
    3. Murakami, Y.,
    4. Nguyen, V.,
    5. Chiang, S. C. C.,
    6. Cullinane, A. R.,
    7. Peruzzi, G.,
    8. Gahl, W. A.,
    9. Coligan, J. E.,
    10. Introne, W. J. et al.
    (2016). Chediak-Higashi syndrome: Lysosomal trafficking regulator domains regulate exocytosis of lytic granules but not cytokine secretion by natural killer cells. J. Allergy Clin. Immunol. 137, 1165-1177. doi:10.1016/j.jaci.2015.08.039
    OpenUrlCrossRef
    1. Gissen, P.,
    2. Johnson, C. A.,
    3. Morgan, N. V.,
    4. Stapelbroek, J. M.,
    5. Forshew, T.,
    6. Cooper, W. N.,
    7. McKiernan, P. J.,
    8. Klomp, L. W. J.,
    9. Morris, A. A. M.,
    10. Wraith, J. E. et al
    . (2004). Mutations in VPS33B, encoding a regulator of SNARE-dependent membrane fusion, cause arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome. Nat. Genet. 36, 400-404. doi:10.1038/ng1325
    OpenUrlCrossRefPubMedWeb of Science
  77. ↵
    1. Goldenring, J. R.
    (2015). Recycling endosomes. Curr. Opin. Cell Biol. 35, 117-122. doi:10.1016/j.ceb.2015.04.018
    OpenUrlCrossRefPubMed
  78. ↵
    1. Gomez, R. C.,
    2. Wawro, P.,
    3. Lis, P.,
    4. Alessi, D. R. and
    5. Pfeffer, S. R.
    (2019). Membrane association but not identity is required for LRRK2 activation and phosphorylation of Rab GTPases. J. Cell Biol.. 218, 4157-4170. doi:10.1083/jcb.201902184
    OpenUrlAbstract/FREE Full Text
    1. Guelly, C.,
    2. Zhu, P.-P.,
    3. Leonardis, L.,
    4. Papić, L.,
    5. Zidar, J.,
    6. Schabhüttl, M.,
    7. Strohmaier, H.,
    8. Weis, J.,
    9. Strom, T. M.,
    10. Baets, J. et al
    . (2011). Targeted high-throughput sequencing identifies mutations in atlastin-1 as a cause of hereditary sensory neuropathy type I. Am. J. Hum. Genet. 88, 99-105. doi:10.1016/j.ajhg.2010.12.003
    OpenUrlCrossRefPubMed
    1. Gustavsson, E. K.,
    2. Guella, I.,
    3. Trinh, J.,
    4. Szu-Tu, C.,
    5. Rajput, A.,
    6. Rajput, A. H.,
    7. Steele, J. C.,
    8. McKeown, M.,
    9. Jeon, B. S.,
    10. Aasly, J. O. et al
    . (2015). Genetic variability of the retromer cargo recognition complex in parkinsonism. Mov. Disord. 30, 580-584. doi:10.1002/mds.26104
    OpenUrlCrossRefPubMed
  79. ↵
    1. Haack, T. B.,
    2. Staufner, C.,
    3. Köpke, M. G.,
    4. Straub, B. K.,
    5. Kölker, S.,
    6. Thiel, C.,
    7. Freisinger, P.,
    8. Baric, I.,
    9. McKiernan, P. J.,
    10. Dikow, N. et al.
    (2015). Biallelic mutations in NBAS cause recurrent acute liver failure with onset in infancy. Am. J. Hum. Genet. 97, 163-169. doi:10.1016/j.ajhg.2015.05.009
    OpenUrlCrossRefPubMed
    1. Hadano, S.,
    2. Hand, C. K.,
    3. Osuga, H.,
    4. Yanagisawa, Y.,
    5. Otomo, A.,
    6. Devon, R. S.,
    7. Miyamoto, N.,
    8. Showguchi-Miyata, J.,
    9. Okada, Y.,
    10. Singaraja, R. et al
    . (2001). A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2. Nat. Genet. 29, 166-173. doi:10.1038/ng1001-166
    OpenUrlCrossRefPubMedWeb of Science
    1. Hady-Cohen, R.,
    2. Ben-Pazi, H.,
    3. Adir, V.,
    4. Yosovich, K.,
    5. Blumkin, L.,
    6. Lerman-Sagie, T. and
    7. Lev, D
    . (2018). Progressive cerebello-cerebral atrophy and progressive encephalopathy with edema, hypsarrhythmia and optic atrophy may be allelic syndromes. Eur. J. Paediatr. Neurol. 22, 1133-1138. doi:10.1016/j.ejpn.2018.07.003
    OpenUrlCrossRef
    1. Halperin, D.,
    2. Kadir, R.,
    3. Perez, Y.,
    4. Drabkin, M.,
    5. Yogev, Y.,
    6. Wormser, O.,
    7. Berman, E. M.,
    8. Eremenko, E.,
    9. Rotblat, B.,
    10. Shorer, Z. et al
    . (2019). SEC31A mutation affects ER homeostasis, causing a neurological syndrome. J. Med. Genet. 56, 139-148. doi:10.1136/jmedgenet-2018-105503
    OpenUrlAbstract/FREE Full Text
    1. Han, C.,
    2. Alkhater, R.,
    3. Froukh, T.,
    4. Minassian, A. G.,
    5. Galati, M.,
    6. Liu, R. H.,
    7. Fotouhi, M.,
    8. Sommerfeld, J.,
    9. Alfrook, A. J.,
    10. Marshall, C. et al
    . (2016). Epileptic encephalopathy caused by mutations in the guanine nucleotide exchange factor DENND5A. Am. J. Hum. Genet. 99, 1359-1367. doi:10.1016/j.ajhg.2016.10.006
    OpenUrlCrossRef
    1. Hanein, S.,
    2. Martin, E.,
    3. Boukhris, A.,
    4. Byrne, P.,
    5. Goizet, C.,
    6. Hamri, A.,
    7. Benomar, A.,
    8. Lossos, A.,
    9. Denora, P.,
    10. Fernandez, J. et al
    . (2008). Identification of the SPG15 gene, encoding spastizin, as a frequent cause of complicated autosomal-recessive spastic paraplegia, including Kjellin syndrome. Am. J. Hum. Genet. 82, 992-1002. doi:10.1016/j.ajhg.2008.03.004
    OpenUrlCrossRefPubMedWeb of Science
  80. ↵
    1. Hardies, K.,
    2. May, P.,
    3. Djemie, T.,
    4. Tarta-Arsene, O.,
    5. Deconinck, T.,
    6. Craiu, D., AR working group of the EuroEPINOMICS RES Consortium,
    7. Helbig, I.,
    8. Suls, A.,
    9. Balling, R. et al.
    (2015). Recessive loss-of-function mutations in AP4S1 cause mild fever-sensitive seizures, developmental delay and spastic paraplegia through loss of AP-4 complex assembly. Hum. Mol. Genet. 24, 2218-2227. doi:10.1093/hmg/ddu740
    OpenUrlCrossRefPubMed
    1. Hardies, K.,
    2. Cai, Y.,
    3. Jardel, C.,
    4. Jansen, A. C.,
    5. Cao, M.,
    6. May, P.,
    7. Djemie, T.,
    8. Hachon Le Camus, C.,
    9. Keymolen, K.,
    10. Deconinck, T.
    , (2016). Loss of SYNJ1 dual phosphatase activity leads to early onset refractory seizures and progressive neurological decline. Brain 139, 2420-2430. doi:10.1093/brain/aww180
    OpenUrlCrossRefPubMed
  81. ↵
    1. Hardiman, O.,
    2. Al-Chalabi, A.,
    3. Chio, A.,
    4. Corr, E. M.,
    5. Logroscino, G.,
    6. Robberecht, W.,
    7. Shaw, P. J.,
    8. Simmons, Z. and
    9. van den Berg, L. H.
    (2017). Amyotrophic lateral sclerosis. Nat. Rev. Dis. Primers 3, 17071. doi:10.1038/nrdp.2017.71
    OpenUrlCrossRef
    1. Harlalka, G. V.,
    2. McEntagart, M. E.,
    3. Gupta, N.,
    4. Skrzypiec, A. E.,
    5. Mucha, M. W.,
    6. Chioza, B. A.,
    7. Simpson, M. A.,
    8. Sreekantan-Nair, A.,
    9. Pereira, A.,
    10. Günther, S. et al
    . (2016). Novel genetic, clinical, and pathomechanistic insights into TFG-associated hereditary spastic paraplegia. Hum. Mutat. 37, 1157-1161. doi:10.1002/humu.23060
    OpenUrlCrossRef
  82. ↵
    1. Harold, D.,
    2. Abraham, R.,
    3. Hollingworth, P.,
    4. Sims, R.,
    5. Gerrish, A.,
    6. Hamshere, M. L.,
    7. Pahwa, J. S.,
    8. Moskvina, V.,
    9. Dowzell, K.,
    10. Williams, A. et al.
    (2009). Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. Nat. Genet. 41, 1088-1093. doi:10.1038/ng.440
    OpenUrlCrossRefPubMedWeb of Science
    1. Harripaul, R.,
    2. Vasli, N.,
    3. Mikhailov, A.,
    4. Rafiq, M. A.,
    5. Mittal, K.,
    6. Windpassinger, C.,
    7. Sheikh, T. I.,
    8. Noor, A.,
    9. Mahmood, H.,
    10. Downey, S. et al
    . (2018). Mapping autosomal recessive intellectual disability: combined microarray and exome sequencing identifies 26 novel candidate genes in 192 consanguineous families. Mol. Psychiatry 23, 973-984. doi:10.1038/mp.2017.60
    OpenUrlCrossRefPubMed
  83. ↵
    1. Hazan, J.,
    2. Fonknechten, N.,
    3. Mavel, D.,
    4. Paternotte, C.,
    5. Samson, D.,
    6. Artiguenave, F.,
    7. Davoine, C. S.,
    8. Cruaud, C.,
    9. Durr, A.,
    10. Wincker, P. et al.
    (1999). Spastin, a new AAA protein, is altered in the most frequent form of autosomal dominant spastic paraplegia. Nat. Genet. 23, 296-303. doi:10.1038/15472
    OpenUrlCrossRefPubMedWeb of Science
  84. ↵
    1. He, G.,
    2. Gupta, S.,
    3. Yi, M.,
    4. Michaely, P.,
    5. Hobbs, H. H. and
    6. Cohen, J. C.
    (2002). ARH is a modular adaptor protein that interacts with the LDL receptor, clathrin, and AP-2. J. Biol. Chem. 277, 44044-44049. doi:10.1074/jbc.M208539200
    OpenUrlAbstract/FREE Full Text
    1. Helbig, I.,
    2. Lopez-Hernandez, T.,
    3. Shor, O.,
    4. Galer, P.,
    5. Ganesan, S.,
    6. Pendziwiat, M.,
    7. Rademacher, A.,
    8. Ellis, C. A.,
    9. Humpfer, N.,
    10. Schwarz, N. et al
    . (2019). A recurrent missense variant in AP2M1 impairs clathrin-mediated endocytosis and causes developmental and epileptic encephalopathy. Am. J. Hum. Genet. 104, 1060-1072. doi:10.1016/j.ajhg.2019.04.001
    OpenUrlCrossRef
  85. ↵
    1. Hennies, H. C.,
    2. Kornak, U.,
    3. Zhang, H.,
    4. Egerer, J.,
    5. Zhang, X.,
    6. Seifert, W.,
    7. Kühnisch, J.,
    8. Budde, B.,
    9. Nätebus, M.,
    10. Brancati, F. et al.
    (2008). Gerodermia osteodysplastica is caused by mutations in SCYL1BP1, a Rab-6 interacting golgin. Nat. Genet. 40, 1410-1412. doi:10.1038/ng.252
    OpenUrlCrossRefPubMedWeb of Science
  86. ↵
    1. Hollingworth, P.,
    2. Harold, D.,
    3. Sims, R.,
    4. Gerrish, A.,
    5. Lambert, J. C.,
    6. Carrasquillo, M. M.,
    7. Abraham, R.,
    8. Hamshere, M. L.,
    9. Pahwa, J. S.,
    10. Moskvina, V. et al.
    (2011). Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nat. Genet. 43, 429-435. doi:10.1038/ng.803
    OpenUrlCrossRefPubMedWeb of Science
  87. ↵
    1. Hoopes, R. R., Jr.,
    2. Shrimpton, A. E.,
    3. Knohl, S. J.,
    4. Hueber, P.,
    5. Hoppe, B.,
    6. Matyus, J.,
    7. Simckes, A.,
    8. Tasic, V.,
    9. Toenshoff, B.,
    10. Suchy, S. F. et al.
    (2005). Dent Disease with mutations in OCRL1. Am. J. Hum. Genet. 76, 260-267. doi:10.1086/427887
    OpenUrlCrossRefPubMedWeb of Science
  88. ↵
    1. Hsiao, Y.-C.,
    2. Tuz, K. and
    3. Ferland, R. J.
    (2012). Trafficking in and to the primary cilium. Cilia 1, 4. doi:10.1186/2046-2530-1-4
    OpenUrlCrossRefPubMed
  89. ↵
    1. Hu, X.,
    2. Pickering, E.,
    3. Liu, Y. C.,
    4. Hall, S.,
    5. Fournier, H.,
    6. Katz, E.,
    7. Dechairo, B.,
    8. John, S.,
    9. Van Eerdewegh, P.,
    10. Soares, H. et al.
    (2011). Meta-analysis for genome-wide association study identifies multiple variants at the BIN1 locus associated with late-onset Alzheimer's disease. PLoS ONE 6, e16616. doi:10.1371/journal.pone.0016616
    OpenUrlCrossRefPubMed
  90. ↵
    1. Huizing, M.,
    2. Helip-Wooley, A.,
    3. Westbroek, W.,
    4. Gunay-Aygun, M. and
    5. Gahl, W. A.
    (2008). Disorders of lysosome-related organelle biogenesis: clinical and molecular genetics. Annu. Rev. Genomics Hum. Genet. 9, 359-386. doi:10.1146/annurev.genom.9.081307.164303
    OpenUrlCrossRefPubMedWeb of Science
  91. ↵
    1. Hung, V.,
    2. Udeshi, N. D.,
    3. Lam, S. S.,
    4. Loh, K. H.,
    5. Cox, K. J.,
    6. Pedram, K.,
    7. Carr, S. A. and
    8. Ting, A. Y.
    (2016). Spatially resolved proteomic mapping in living cells with the engineered peroxidase APEX2. Nat. Protoc. 11, 456-475. doi:10.1038/nprot.2016.018
    OpenUrlCrossRefPubMed
  92. ↵
    1. Illa, I.,
    2. Serrano-Munuera, C.,
    3. Gallardo, E.,
    4. Lasa, A.,
    5. Rojas-Garcia, R.,
    6. Palmer, J.,
    7. Gallano, P.,
    8. Baiget, M.,
    9. Matsuda, C. and
    10. Brown, R. H.
    (2001). Distal anterior compartment myopathy: a dysferlin mutation causing a new muscular dystrophy phenotype. Ann. Neurol. 49, 130-134.doi:<130::AID-ANA22>3.0.CO;2-0
    OpenUrlCrossRefPubMedWeb of Science
  93. ↵
    1. Inoue, K. and
    2. Ishibe, S.
    (2015). Podocyte endocytosis in the regulation of the glomerular filtration barrier. Am. J. Physiol. Renal. Physiol. 309, F398-F405. doi:10.1152/ajprenal.00136.2015
    OpenUrlCrossRefPubMed
  94. ↵
    1. Isaji, T.,
    2. Im, S.,
    3. Gu, W.,
    4. Wang, Y.,
    5. Hang, Q.,
    6. Lu, J.,
    7. Fukuda, T.,
    8. Hashii, N.,
    9. Takakura, D.,
    10. Kawasaki, N. et al.
    (2014). An oncogenic protein Golgi phosphoprotein 3 up-regulates cell migration via sialylation. J. Biol. Chem. 289, 20694-20705. doi:10.1074/jbc.M113.542688
    OpenUrlAbstract/FREE Full Text
    1. Ishiura, H.,
    2. Sako, W.,
    3. Yoshida, M.,
    4. Kawarai, T.,
    5. Tanabe, O.,
    6. Goto, J.,
    7. Takahashi, Y.,
    8. Date, H.,
    9. Mitsui, J.,
    10. Ahsan, B. et al
    . (2012). The TRK-fused gene is mutated in hereditary motor and sensory neuropathy with proximal dominant involvement. Am. J. Hum. Genet. 91, 320-329. doi:10.1016/j.ajhg.2012.07.014
    OpenUrlCrossRefPubMed
  95. ↵
    1. Ivanova, E. A.,
    2. De Leo, M. G.,
    3. Van Den Heuvel, L.,
    4. Pastore, A.,
    5. Dijkman, H.,
    6. De Matteis, M. A. and
    7. Levtchenko, E. N.
    (2015). Endo-lysosomal dysfunction in human proximal tubular epithelial cells deficient for lysosomal cystine transporter cystinosin. PLoS ONE 10, e0120998. doi:10.1371/journal.pone.0120998
    OpenUrlCrossRefPubMed
    1. Ivanova, E. L.,
    2. Mau-Them, F. T.,
    3. Riazuddin, S.,
    4. Kahrizi, K.,
    5. Laugel, V.,
    6. Schaefer, E.,
    7. de Saint Martin, A.,
    8. Runge, K.,
    9. Iqbal, Z.,
    10. Spitz, M.-A. et al
    . (2017). Homozygous truncating variants in TBC1D23 cause pontocerebellar hypoplasia and alter cortical development. Am. J. Hum. Genet. 101, 428-440. doi:10.1016/j.ajhg.2017.07.010
    OpenUrlCrossRef
    1. Izumi, K.,
    2. Brett, M.,
    3. Nishi, E.,
    4. Drunat, S.,
    5. Tan, E.-S.,
    6. Fujiki, K.,
    7. Lebon, S.,
    8. Cham, B.,
    9. Masuda, K.,
    10. Arakawa, M. et al
    . (2016). ARCN1 mutations cause a recognizable craniofacial syndrome due to COPI-mediated transport defects. Am. J. Hum. Genet. 99, 451-459. doi:10.1016/j.ajhg.2016.06.011
    OpenUrlCrossRef
  96. ↵
    1. Jensen, D. and
    2. Schekman, R.
    (2011). COPII-mediated vesicle formation at a glance. J. Cell Sci. 124, 1-4. doi:10.1242/jcs.069773
    OpenUrlFREE Full Text
  97. ↵
    1. Jiang, Y.,
    2. Ou, Y. and
    3. Cheng, X.
    (2013). Role of TSG101 in cancer. Front. Biosci. (Landmark Ed) 18, 279-288. doi:10.2741/4176
    OpenUrlCrossRef
    1. Johnson, A. D. and
    2. O'Donnell, C. J
    . (2009). An open access database of genome-wide association results. BMC Med. Genet. 10, 6. doi:10.1186/1471-2350-10-6
    OpenUrlCrossRefPubMed
  98. ↵
    1. Jones, B.,
    2. Jones, E. L.,
    3. Bonney, S. A.,
    4. Patel, H. N.,
    5. Mensenkamp, A. R.,
    6. Eichenbaum-Voline, S.,
    7. Rudling, M.,
    8. Myrdal, U.,
    9. Annesi, G.,
    10. Naik, S. et al.
    (2003). Mutations in a Sar1 GTPase of COPII vesicles are associated with lipid absorption disorders. Nat. Genet. 34, 29-31. doi:10.1038/ng1145
    OpenUrlCrossRefPubMedWeb of Science
  99. ↵
    1. Joshi, G. and
    2. Wang, Y.
    (2015). Golgi defects enhance APP amyloidogenic processing in Alzheimer's disease. BioEssays 37, 240-247. doi:10.1002/bies.201400116
    OpenUrlCrossRefPubMed
    1. Josifova, D
    . (2007). RAB23 mutations in carpenter syndrome imply an unexpected role for hedgehog signaling in cranial-suture development and obesity (vol 80, pg 1162, 2007). Am. J. Hum. Genet. 81, 1114-1114. doi:10.1086/522891
    OpenUrlCrossRef
  100. ↵
    1. Jun, G.,
    2. Naj, A. C.,
    3. Beecham, G. W.,
    4. Wang, L. S.,
    5. Buros, J.,
    6. Gallins, P. J.,
    7. Buxbaum, J. D.,
    8. Ertekin-Taner, N.,
    9. Fallin, M. D.,
    10. Friedland, R. et al.
    (2010). Meta-analysis confirms CR1, CLU, and PICALM as alzheimer disease risk loci and reveals interactions with APOE genotypes. Arch. Neurol. 67, 1473-1484. doi:10.1001/archneurol.2010.201
    OpenUrlCrossRefPubMedWeb of Science
  101. ↵
    1. Karim, M. A.,
    2. Suzuki, K.,
    3. Fukai, K.,
    4. Oh, J.,
    5. Nagle, D. L.,
    6. Moore, K. J.,
    7. Barbosa, E.,
    8. Falik-Borenstein, T.,
    9. Filipovich, A.,
    10. Ishida, Y. et al.
    (2002). Apparent genotype-phenotype correlation in childhood, adolescent, and adult Chediak-Higashi syndrome. Am. J. Med. Genet. 108, 16-22. doi:10.1002/ajmg.10184
    OpenUrlCrossRefPubMedWeb of Science
    1. Kato, K.,
    2. Oka, Y.,
    3. Muramatsu, H.,
    4. Vasilev, F. F.,
    5. Otomo, T.,
    6. Oishi, H.,
    7. Kawano, Y.,
    8. Kidokoro, H.,
    9. Nakazawa, Y.,
    10. Ogi, T. et al
    . (2019). Biallelic VPS35L pathogenic variants cause 3C/Ritscher-Schinzel-like syndrome through dysfunction of retriever complex. J. Med. Genet. 57, 245-253. doi:10.1136/jmedgenet-2019-106213
    OpenUrlAbstract/FREE Full Text
  102. ↵
    1. Khoriaty, R.,
    2. Hesketh, G. G.,
    3. Bernard, A.,
    4. Weyand, A. C.,
    5. Mellacheruvu, D.,
    6. Zhu, G.,
    7. Hoenerhoff, M. J.,
    8. McGee, B.,
    9. Everett, L.,
    10. Adams, E. J. et al.
    (2018). Functions of the COPII gene paralogs SEC23A and SEC23B are interchangeable in vivo. Proc. Natl. Acad. Sci. USA 115, E7748-E7757. doi:10.1073/pnas.1805784115
    OpenUrlAbstract/FREE Full Text
  103. ↵
    1. Kim, J. M.,
    2. Wu, H.,
    3. Green, G.,
    4. Winkler, C. A.,
    5. Kopp, J. B.,
    6. Miner, J. H.,
    7. Unanue, E. R. and
    8. Shaw, A. S.
    (2003). CD2-associated protein haploinsufficiency is linked to glomerular disease susceptibility. Science 300, 1298-1300. doi:10.1126/science.1081068
    OpenUrlAbstract/FREE Full Text
  104. ↵
    1. Klinkert, K. and
    2. Echard, A.
    (2016). Rab35 GTPase: a central regulator of phosphoinositides and F-actin in endocytic recycling and beyond. Traffic 17, 1063-1077. doi:10.1111/tra.12422
    OpenUrlCrossRef
    1. Kodera, H.,
    2. Ando, N.,
    3. Yuasa, I.,
    4. Wada, Y.,
    5. Tsurusaki, Y.,
    6. Nakashima, M.,
    7. Miyake, N.,
    8. Saitoh, S.,
    9. Matsumoto, N. and
    10. Saitsu, H
    . (2015). Mutations in COG2 encoding a subunit of the conserved oligomeric golgi complex cause a congenital disorder of glycosylation. Clin. Genet. 87, 455-460. doi:10.1111/cge.12417
    OpenUrlCrossRefPubMed
  105. ↵
    1. Kondo, H.,
    2. Maksimova, N.,
    3. Otomo, T.,
    4. Kato, H.,
    5. Imai, A.,
    6. Asano, Y.,
    7. Kobayashi, K.,
    8. Nojima, S.,
    9. Nakaya, A.,
    10. Hamada, Y. et al.
    (2017). Mutation in VPS33A affects metabolism of glycosaminoglycans: a new type of mucopolysaccharidosis with severe systemic symptoms. Hum. Mol. Genet. 26, 173-183. doi:10.1093/hmg/ddw377
    OpenUrlCrossRef
    1. Korpal, M.,
    2. Ell, B. J.,
    3. Buffa, F. M.,
    4. Ibrahim, T.,
    5. Blanco, M. A.,
    6. Celià-Terrassa, T.,
    7. Mercatali, L.,
    8. Khan, Z.,
    9. Goodarzi, H.,
    10. Hua, Y. et al
    . (2011). Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization. Nat. Med. 17, 1101-1108. doi:10.1038/nm.2401
    OpenUrlCrossRefPubMed
    1. Koutsopoulos, O. S.,
    2. Kretz, C.,
    3. Weller, C. M.,
    4. Roux, A.,
    5. Mojzisova, H.,
    6. Böhm, J.,
    7. Koch, C.,
    8. Toussaint, A.,
    9. Heckel, E.,
    10. Stemkens, D. et al
    . (2013). Dynamin 2 homozygous mutation in humans with a lethal congenital syndrome. Eur. J. Hum. Genet. 21, 637-642. doi:10.1038/ejhg.2012.226
    OpenUrlCrossRefPubMed
    1. Kranz, C.,
    2. Ng, B. G.,
    3. Sun, L.,
    4. Sharma, V.,
    5. Eklund, E. A.,
    6. Miura, Y.,
    7. Ungar, D.,
    8. Lupashin, V.,
    9. Winkel, R. D.,
    10. Cipollo, J. F. et al
    . (2007). COG8 deficiency causes new congenital disorder of glycosylation type IIh. Hum. Mol. Genet. 16, 731-741. doi:10.1093/hmg/ddm028
    OpenUrlCrossRefPubMedWeb of Science
  106. ↵
    1. Krebs, C. E.,
    2. Karkheiran, S.,
    3. Powell, J. C.,
    4. Cao, M.,
    5. Makarov, V.,
    6. Darvish, H.,
    7. Di Paolo, G.,
    8. Walker, R. H.,
    9. Shahidi, G. A.,
    10. Buxbaum, J. D. et al.
    (2013). The Sac1 domain of SYNJ1 identified mutated in a family with early-onset progressive Parkinsonism with generalized seizures. Hum. Mutat. 34, 1200-1207. doi:10.1002/humu.22372
    OpenUrlCrossRefPubMed
  107. ↵
    1. Kreis, T. E. and
    2. Lodish, H. F.
    (1986). Oligomerization is essential for transport of vesicular stomatitis viral glycoprotein to the cell surface. Cell 46, 929-937. doi:10.1016/0092-8674(86)90075-9
    OpenUrlCrossRefPubMedWeb of Science
  108. ↵
    1. Kuismanen, E. and
    2. Saraste, J.
    (1989). Low temperature-induced transport blocks as tools to manipulate membrane traffic. Methods Cell Biol. 32, 257-274. doi:10.1016/S0091-679X(08)61174-7
    OpenUrlCrossRefPubMedWeb of Science
    1. Lamers, I. J. C.,
    2. Reijnders, M. R. F.,
    3. Venselaar, H.,
    4. Kraus, A.,
    5. Jansen, S.,
    6. de Vries, B. B. A.,
    7. Houge, G.,
    8. Gradek, G. A.,
    9. Seo, J.,
    10. Choi, M. et al
    . (2017). Recurrent De Novo mutations disturbing the GTP/GDP binding pocket of RAB11B cause intellectual disability and a distinctive brain phenotype. Am. J. Hum. Genet. 101, 824-832. doi:10.1016/j.ajhg.2017.09.015
    OpenUrlCrossRefPubMed
  109. ↵
    1. Lancaster, M. A. and
    2. Huch, M.
    (2019). Disease modelling in human organoids. Dis. Model. Mech. 12, dmm039347. doi:10.1242/dmm.039347
    OpenUrlAbstract/FREE Full Text
  110. ↵
    1. Laporte, J.,
    2. Biancalana, V.,
    3. Tanner, S. M.,
    4. Kress, W.,
    5. Schneider, V.,
    6. Wallgren-Pettersson, C.,
    7. Herger, F.,
    8. Buj-Bello, A.,
    9. Blondeau, F.,
    10. Liechti-Gallati, S. et al.
    (2000). MTM1 mutations in X-linked myotubular myopathy. Hum. Mutat. 15, 393-409. doi:10.1002/(SICI)1098-1004(200005)15:5<393::AID-HUMU1>3.0.CO;2-R
    OpenUrlCrossRefPubMedWeb of Science
  111. ↵
    1. Larson, A. A.,
    2. Baker, P. R., II.,
    3. Milev, M. P.,
    4. Press, C. A.,
    5. Sokol, R. J.,
    6. Cox, M. O.,
    7. Lekostaj, J. K.,
    8. Stence, A. A.,
    9. Bossler, A. D.,
    10. Mueller, J. M. et al.
    (2018). TRAPPC11 and GOSR2 mutations associate with hypoglycosylation of alpha-dystroglycan and muscular dystrophy. Skelet Muscle 8, 17. doi:10.1186/s13395-018-0163-0
    OpenUrlCrossRef
  112. ↵
    1. Lee, E.,
    2. Marcucci, M.,
    3. Daniell, L.,
    4. Pypaert, M.,
    5. Weisz, O. A.,
    6. Ochoa, G. C.,
    7. Farsad, K.,
    8. Wenk, M. R. and
    9. De Camilli, P.
    (2002). Amphiphysin 2 (Bin1) and T-tubule biogenesis in muscle. Science 297, 1193-1196. doi:10.1126/science.1071362
    OpenUrlAbstract/FREE Full Text
    1. Lee, H. J.,
    2. Song, J. Y.,
    3. Kim, J. W.,
    4. Jin, S.-Y.,
    5. Hong, M. S.,
    6. Park, J. K.,
    7. Chung, J.-H.,
    8. Shibata, H. and
    9. Fukumaki, Y
    . (2005). Association study of polymorphisms in synaptic vesicle-associated genes, SYN2 and CPLX2, with schizophrenia. Behav. Brain Funct. 1, 15. doi:10.1186/1744-9081-1-15
    OpenUrlCrossRefPubMed
  113. ↵
    1. Lek, A.,
    2. Evesson, F. J.,
    3. Sutton, R. B.,
    4. North, K. N. and
    5. Cooper, S. T.
    (2012). Ferlins: regulators of vesicle fusion for auditory neurotransmission, receptor trafficking and membrane repair. Traffic 13, 185-194. doi:10.1111/j.1600-0854.2011.01267.x
    OpenUrlCrossRefPubMedWeb of Science
    1. Lemos, R. R.,
    2. Oliveira, D. F.,
    3. Zatz, M. and
    4. Oliveira, J. R. M
    . (2011). Population and computational analysis of the MGEA6 P521A variation as a risk factor for familial idiopathic basal ganglia calcification (Fahr's Disease). J. Mol. Neurosci. 43, 333-336. doi:10.1007/s12031-010-9445-7
    OpenUrlCrossRefPubMed
    1. Lenk, G. M.,
    2. Szymanska, K.,
    3. Debska-Vielhaber, G.,
    4. Rydzanicz, M.,
    5. Walczak, A.,
    6. Bekiesinska-Figatowska, M.,
    7. Vielhaber, S.,
    8. Hallmann, K.,
    9. Stawinski, P.,
    10. Buehring, S. et al
    . (2016). Biallelic mutations of VAC14 in pediatric-onset neurological disease. Am. J. Hum. Genet. 99, 188-194. doi:10.1016/j.ajhg.2016.05.008
    OpenUrlCrossRefPubMed
  114. ↵
    1. Lenz, D.,
    2. McClean, P.,
    3. Kansu, A.,
    4. Bonnen, P. E.,
    5. Ranucci, G.,
    6. Thiel, C.,
    7. Straub, B. K.,
    8. Harting, I.,
    9. Alhaddad, B.,
    10. Dimitrov, B. et al.
    (2018). SCYL1 variants cause a syndrome with low γ-glutamyl-transferase cholestasis, acute liver failure, and neurodegeneration (CALFAN). Genet. Med. 20, 1255-1265. doi:10.1038/gim.2017.260
    OpenUrlCrossRef
    1. Lerner, T. J.,
    2. Boustany, R. M. N.,
    3. Anderson, J. W.,
    4. Darigo, K. L.,
    5. Schlumpf, K.,
    6. Buckler, A. J.,
    7. Gusella, J. F.,
    8. Haines, J. L.,
    9. Kremmidiotis, G.,
    10. Lensink, I. L. et al
    . (1995). Isolation of a novel gene underlying batten-disease, CLN3. Cell 82, 949-957. doi:10.1016/0092-8674(95)90274-0
    OpenUrlCrossRefPubMedWeb of Science
    1. Li, L. and
    2. Cohen, S. N
    . (1996). Tsg101: a novel tumor susceptibility gene isolated by controlled homozygous functional knockout of allelic loci in mammalian cells. Cell 85, 319-329. doi:10.1016/S0092-8674(00)81111-3
    OpenUrlCrossRefPubMedWeb of Science
  115. ↵
    1. Li, W.,
    2. Zhang, Q.,
    3. Oiso, N.,
    4. Novak, E. K.,
    5. Gautam, R.,
    6. O'Brien, E. P.,
    7. Tinsley, C. L.,
    8. Blake, D. J.,
    9. Spritz, R. A.,
    10. Copeland, N. G. et al.
    (2003). Hermansky-Pudlak syndrome type 7 (HPS-7) results from mutant dysbindin, a member of the biogenesis of lysosome-related organelles complex 1 (BLOC-1). Nat. Genet. 35, 84-89. doi:10.1038/ng1229
    OpenUrlCrossRefPubMedWeb of Science
  116. ↵
    1. Li, N.,
    2. Nakamura, K.,
    3. Jiang, Y.,
    4. Tsurui, H.,
    5. Matsuoka, S.,
    6. Abe, M.,
    7. Ohtsuji, M.,
    8. Nishimura, H.,
    9. Kato, K.,
    10. Kawai, T. et al.
    (2004). Gain-of-function polymorphism in mouse and human Ltk: implications for the pathogenesis of systemic lupus erythematosus. Hum. Mol. Genet. 13, 171-179. doi:10.1093/hmg/ddh020
    OpenUrlCrossRefPubMedWeb of Science
    1. Li, S.,
    2. Tiab, L.,
    3. Jiao, X.,
    4. Munier, F. L.,
    5. Zografos, L.,
    6. Frueh, B. E.,
    7. Sergeev, Y.,
    8. Smith, J.,
    9. Rubin, B.,
    10. Meallet, M. A. et al
    . (2005). Mutations in PIP5K3 are associated with Francois-Neetens mouchetee fleck corneal dystrophy. Am. J. Hum. Genet. 77, 54-63. doi:10.1086/431346
    OpenUrlCrossRefPubMedWeb of Science
    1. Liegel, R. P.,
    2. Handley, M. T.,
    3. Ronchetti, A.,
    4. Brown, S.,
    5. Langemeyer, L.,
    6. Linford, A.,
    7. Chang, B.,
    8. Morris-Rosendahl, D. J.,
    9. Carpanini, S.,
    10. Posmyk, R. et al
    . (2013). Loss-of-function mutations in TBC1 D20 cause cataracts and male infertility in blind sterile mice and warburg micro syndrome in humans. Am. J. Hum. Genet. 93, 1001-1014. doi:10.1016/j.ajhg.2013.10.011
    OpenUrlCrossRefPubMed
    1. Lines, M. A.,
    2. Ito, Y.,
    3. Kernohan, K. D.,
    4. Mears, W.,
    5. Hurteau-Miller, J.,
    6. Venkateswaran, S.,
    7. Ward, L.,
    8. Khatchadourian, K.,
    9. McClintock, J.,
    10. Bhola, P. et al
    . (2017). Yunis-Varon syndrome caused by biallelic VAC14 mutations. Eur. J. Hum. Genet. 25, 1049-1054. doi:10.1038/ejhg.2017.99
    OpenUrlCrossRef
  117. ↵
    1. Liu, J.,
    2. Aoki, M.,
    3. Illa, I.,
    4. Wu, C.,
    5. Fardeau, M.,
    6. Angelini, C.,
    7. Serrano, C.,
    8. Urtizberea, J. A.,
    9. Hentati, F.,
    10. Hamida, M. B. et al.
    (1998). Dysferlin, a novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb girdle muscular dystrophy. Nat. Genet. 20, 31-36. doi:10.1038/1682
    OpenUrlCrossRefPubMedWeb of Science
  118. ↵
    1. Lloyd, S. E.,
    2. Pearce, S. H.,
    3. Fisher, S. E.,
    4. Steinmeyer, K.,
    5. Schwappach, B.,
    6. Scheinman, S. J.,
    7. Harding, B.,
    8. Bolino, A.,
    9. Devoto, M.,
    10. Goodyer, P. et al.
    (1996). A common molecular basis for three inherited kidney stone diseases. Nature 379, 445-449. doi:10.1038/379445a0
    OpenUrlCrossRefPubMedWeb of Science
    1. Lopes, F.,
    2. Barbosa, M.,
    3. Ameur, A.,
    4. Soares, G.,
    5. de Sá, J.,
    6. Dias, A. I.,
    7. Oliveira, G.,
    8. Cabral, P.,
    9. Temudo, T.,
    10. Calado, E. et al
    . (2016). Identification of novel genetic causes of Rett syndrome-like phenotypes. J. Med. Genet. 53, 190-199. doi:10.1136/jmedgenet-2015-103568
    OpenUrlAbstract/FREE Full Text
  119. ↵
    1. Lu, Q.,
    2. Hope, L. W.,
    3. Brasch, M.,
    4. Reinhard, C. and
    5. Cohen, S. N.
    (2003). TSG101 interaction with HRS mediates endosomal trafficking and receptor down-regulation. Proc. Natl. Acad. Sci. USA 100, 7626-7631. doi:10.1073/pnas.0932599100
    OpenUrlAbstract/FREE Full Text
    1. Lubbehusen, J.,
    2. Thiel, C.,
    3. Rind, N.,
    4. Ungar, D.,
    5. Prinsen, B. H. C. M. T.,
    6. de Koning, T. J.,
    7. van Hasselt, P. M. and
    8. Korner, C
    . (2010). Fatal outcome due to deficiency of subunit 6 of the conserved oligomeric Golgi complex leading to a new type of congenital disorders of glycosylation. Hum. Mol. Genet. 19, 3623-3633. doi:10.1093/hmg/ddq278
    OpenUrlCrossRefPubMedWeb of Science
    1. Luo, M. L.,
    2. Gong, C.,
    3. Chen, C. H.,
    4. Hu, H.,
    5. Huang, P.,
    6. Zheng, M.,
    7. Yao, Y.,
    8. Wei, S.,
    9. Wulf, G.,
    10. Lieberman, J. et al
    . (2015). The Rab2A GTPase promotes breast cancer stem cells and tumorigenesis via Erk signaling activation. Cell Rep 11, 111-124. doi:10.1016/j.celrep.2015.03.002
    OpenUrlCrossRefPubMed
    1. Lupski, J. R.,
    2. Reid, J. G.,
    3. Gonzaga-Jauregui, C.,
    4. Rio Deiros, D.,
    5. Chen, D. C.,
    6. Nazareth, L.,
    7. Bainbridge, M.,
    8. Dinh, H.,
    9. Jing, C.,
    10. Wheeler, D. A. et al
    . (2010). Whole-genome sequencing in a patient with Charcot-Marie-Tooth neuropathy. N. Engl. J. Med. 362, 1181-1191. doi:10.1056/NEJMoa0908094
    OpenUrlCrossRefPubMedWeb of Science
    1. MacDonald, M. E.,
    2. Ambrose, C. M.,
    3. Duyao, M. P.,
    4. Myers, R. H.,
    5. Lin, C.,
    6. Srinidhi, L.,
    7. Barnes, G.,
    8. Taylor, S. A.,
    9. James, M.,
    10. Groot, N. et al
    . (1993). A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72, 971-983. doi:10.1016/0092-8674(93)90585-E
    OpenUrlCrossRefPubMedWeb of Science
  120. ↵
    1. MacLeod, D. A.,
    2. Rhinn, H.,
    3. Kuwahara, T.,
    4. Zolin, A.,
    5. Di Paolo, G.,
    6. McCabe, B. D.,
    7. Marder, K. S.,
    8. Honig, L. S.,
    9. Clark, L. N.,
    10. Small, S. A. et al.
    (2013). RAB7L1 interacts with LRRK2 to modify intraneuronal protein sorting and Parkinson's disease risk. Neuron 77, 425-439. doi:10.1016/j.neuron.2012.11.033
    OpenUrlCrossRefPubMed
    1. Maddirevula, S.,
    2. Alzahrani, F.,
    3. Al-Owain, M.,
    4. Al Muhaizea, M. A.,
    5. Kayyali, H. R.,
    6. AlHashem, A.,
    7. Rahbeeni, Z.,
    8. Al-Otaibi, M.,
    9. Alzaidan, H. I.,
    10. Balobaid, A. et al
    . (2019). Autozygome and high throughput confirmation of disease genes candidacy. Genet. Med. 21, 736-742. doi:10.1038/s41436-018-0138-x
    OpenUrlCrossRef
  121. ↵
    1. Maksimova, N.,
    2. Hara, K.,
    3. Nikolaeva, I.,
    4. Chun-Feng, T.,
    5. Usui, T.,
    6. Takagi, M.,
    7. Nishihira, Y.,
    8. Miyashita, A.,
    9. Fujiwara, H.,
    10. Oyama, T. et al.
    (2010). Neuroblastoma amplified sequence gene is associated with a novel short stature syndrome characterised by optic nerve atrophy and Pelger-Huet anomaly. J. Med. Genet. 47, 538-548. doi:10.1136/jmg.2009.074815
    OpenUrlAbstract/FREE Full Text
    1. Manteghi, S.,
    2. Gingras, M. C.,
    3. Kharitidi, D.,
    4. Galarneau, L.,
    5. Marques, M.,
    6. Yan, M.,
    7. Cencic, R.,
    8. Robert, F.,
    9. Paquet, M.,
    10. Witcher, M. et al
    . (2016). Haploinsufficiency of the ESCRT component HD-PTP predisposes to cancer. Cell Rep 15, 1893-1900. doi:10.1016/j.celrep.2016.04.076
    OpenUrlCrossRef
    1. Marin-Valencia, I.,
    2. Gerondopoulos, A.,
    3. Zaki, M. S.,
    4. Ben-Omran, T.,
    5. Almureikhi, M.,
    6. Demir, E.,
    7. Guemez-Gamboa, A.,
    8. Gregor, A.,
    9. Issa, M. Y.,
    10. Appelhof, B. et al
    . (2017). Homozygous mutations in TBC1D23 lead to a non-degenerative form of pontocerebellar hypoplasia. Am. J. Hum. Genet. 101, 441-450. doi:10.1016/j.ajhg.2017.07.015
    OpenUrlCrossRef
    1. Marin-Valencia, I.,
    2. Novarino, G.,
    3. Johansen, A.,
    4. Rosti, B.,
    5. Issa, M. Y.,
    6. Musaev, D.,
    7. Bhat, G.,
    8. Scott, E.,
    9. Silhavy, J. L.,
    10. Stanley, V. et al
    . (2018). A homozygous founder mutation in TRAPPC6B associates with a neurodevelopmental disorder characterised by microcephaly, epilepsy and autistic features. J. Med. Genet. 55, 48-54. doi:10.1136/jmedgenet-2017-104627
    OpenUrlAbstract/FREE Full Text
  122. ↵
    1. Marks, M. S.,
    2. Heijnen, H. F. and
    3. Raposo, G.
    (2013). Lysosome-related organelles: unusual compartments become mainstream. Curr. Opin. Cell Biol. 25, 495-505. doi:10.1016/j.ceb.2013.04.008
    OpenUrlCrossRefPubMed
    1. Maruyama, H.,
    2. Morino, H.,
    3. Ito, H.,
    4. Izumi, Y.,
    5. Kato, H.,
    6. Watanabe, Y.,
    7. Kinoshita, Y.,
    8. Kamada, M.,
    9. Nodera, H.,
    10. Suzuki, H. et al
    . (2010). Mutations of optineurin in amyotrophic lateral sclerosis. Nature 465, 223-226. doi:10.1038/nature08971
    OpenUrlCrossRefPubMedWeb of Science
  123. ↵
    1. Mata, I. F.,
    2. Jang, Y.,
    3. Kim, C. H.,
    4. Hanna, D. S.,
    5. Dorschner, M. O.,
    6. Samii, A.,
    7. Agarwal, P.,
    8. Roberts, J. W.,
    9. Klepitskaya, O.,
    10. Shprecher, D. R. et al.
    (2015). The RAB39B p.G192R mutation causes X-linked dominant Parkinson's disease. Mol Neurodegener 10, 50. doi:10.1186/s13024-015-0045-4
    OpenUrlCrossRefPubMed
  124. ↵
    1. Mattera, R.,
    2. Park, S. Y.,
    3. De Pace, R.,
    4. Guardia, C. M. and
    5. Bonifacino, J. S.
    (2017). AP-4 mediates export of ATG9A from the trans-Golgi network to promote autophagosome formation. Proc. Natl. Acad. Sci. USA 114, E10697-E10706. doi:10.1073/pnas.1717327114
    OpenUrlAbstract/FREE Full Text
  125. ↵
    1. Maurer, M. E. and
    2. Cooper, J. A.
    (2006). The adaptor protein Dab2 sorts LDL receptors into coated pits independently of AP-2 and ARH. J. Cell Sci. 119, 4235-4246. doi:10.1242/jcs.03217
    OpenUrlAbstract/FREE Full Text
  126. ↵
    1. McCaughey, J. and
    2. Stephens, D. J.
    (2018). COPII-dependent ER export in animal cells: adaptation and control for diverse cargo. Histochem. Cell Biol. 150, 119-131. doi:10.1007/s00418-018-1689-2
    OpenUrlCrossRefPubMed
  127. ↵
    1. McMahon, H. T. and
    2. Boucrot, E.
    (2011). Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 12, 517-533. doi:10.1038/nrm3151
    OpenUrlCrossRefPubMed
  128. ↵
    1. Ménasché, G.,
    2. Pastural, E.,
    3. Feldmann, J.,
    4. Certain, S.,
    5. Ersoy, F.,
    6. Dupuis, S.,
    7. Wulffraat, N.,
    8. Bianchi, D.,
    9. Fischer, A.,
    10. Le Deist, F. et al
    . (2000). Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome. Nat. Genet. 25, 173-176. doi:10.1038/76024
    OpenUrlCrossRefPubMedWeb of Science
  129. ↵
    1. Mele, C.,
    2. Iatropoulos, P.,
    3. Donadelli, R.,
    4. Calabria, A.,
    5. Maranta, R.,
    6. Cassis, P.,
    7. Buelli, S.,
    8. Tomasoni, S.,
    9. Piras, R.,
    10. Krendel, M. et al.
    (2011). MYO1E mutations and childhood familial focal segmental glomerulosclerosis. N. Engl. J. Med. 365, 295-306. doi:10.1056/NEJMoa1101273
    OpenUrlCrossRefPubMedWeb of Science
  130. ↵
    1. Mellman, I. and
    2. Yarden, Y.
    (2013). Endocytosis and cancer. Cold Spring Harb. Perspect Biol. 5, a016949. doi:10.1101/cshperspect.a016949
    OpenUrlAbstract/FREE Full Text
  131. ↵
    1. Ménasché, G.,
    2. Ho, C. H.,
    3. Sanal, O.,
    4. Feldmann, J.,
    5. Tezcan, I.,
    6. Ersoy, F.,
    7. Houdusse, A.,
    8. Fischer, A. and
    9. de saint Basile, G.
    (2003). Griscelli syndrome restricted to hypopigmentation results from a melanophilin defect (GS3) or a MYO5A F-exon deletion (GS1). J. Clin. Investig. 112, 450-456. doi:10.1172/JCI200318264
    OpenUrlCrossRefPubMedWeb of Science
  132. ↵
    1. Mignogna, M. L.,
    2. Giannandrea, M.,
    3. Gurgone, A.,
    4. Fanelli, F.,
    5. Raimondi, F.,
    6. Mapelli, L.,
    7. Bassani, S.,
    8. Fang, H.,
    9. Van Anken, E.,
    10. Alessio, M. et al.
    (2015). The intellectual disability protein RAB39B selectively regulates GluA2 trafficking to determine synaptic AMPAR composition. Nat. Commun. 6, 6504. doi:10.1038/ncomms7504
    OpenUrlCrossRefPubMed
    1. Milev, M. P.,
    2. Grout, M. E.,
    3. Saint-Dic, D.,
    4. Cheng, Y. H.,
    5. Glass, I. A.,
    6. Hale, C. J.,
    7. Hanna, D. S.,
    8. Dorschner, M. O.,
    9. Prematilake, K.,
    10. Shaag, A. et al
    . (2017). Mutations in TRAPPC12 manifest in progressive childhood encephalopathy and golgi dysfunction. Am. J. Hum. Genet. 101, 291-299. doi:10.1016/j.ajhg.2017.07.006
    OpenUrlCrossRef
    1. Mir, A.,
    2. Kaufman, L.,
    3. Noor, A.,
    4. Motazacker, M. M.,
    5. Jamil, T.,
    6. Azam, M.,
    7. Kahrizi, K.,
    8. Rafiq, M. A.,
    9. Weksberg, R.,
    10. Nasr, T. et al
    . (2009). Identification of mutations in TRAPPC9, which encodes the NIK- and IKK-β-binding protein, in nonsyndromic autosomal-recessive mental retardation. Am. J. Hum. Genet. 85, 909-915. doi:10.1016/j.ajhg.2009.11.009
    OpenUrlCrossRefPubMedWeb of Science
  133. ↵
    1. Miranda, A. M.,
    2. Herman, M.,
    3. Cheng, R.,
    4. Nahmani, E.,
    5. Barrett, G.,
    6. Micevska, E.,
    7. Fontaine, G.,
    8. Potier, M. C.,
    9. Head, E.,
    10. Schmitt, F. A. et al.
    (2018). Excess synaptojanin 1 contributes to place cell dysfunction and memory deficits in the aging hippocampus in three types of Alzheimer's disease. Cell Rep 23, 2967-2975. doi:10.1016/j.celrep.2018.05.011
    OpenUrlCrossRef
    1. Miura, Y.,
    2. Tay, S. K.,
    3. Aw, M. M.,
    4. Eklund, E. A. and
    5. Freeze, H. H
    . (2005). Clinical and biochemical characterization of a patient with congenital disorder of glycosylation (CDG) IIx. J. Pediatr. 147, 851-853.