Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About DMM
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contact
    • Contact DMM
    • Advertising
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in

Search

  • Advanced search
Disease Models & Mechanisms
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Disease Models & Mechanisms

Advanced search

RSS   Twitter   Facebook   YouTube

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About DMM
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contact
    • Contact DMM
    • Advertising
    • Feedback
RESEARCH ARTICLE
An HIV-Tat inducible mouse model system of childhood HIV-associated nephropathy
Pingtao Tang, Jharna R. Das, Jinliang Li, Jing Yu, Patricio E. Ray
Disease Models & Mechanisms 2020 13: dmm045641 doi: 10.1242/dmm.045641 Published 28 October 2020
Pingtao Tang
1Center for Genetic Medicine Research, Children's National Hospital, Washington, DC 20010, USA
2Department of Pediatrics, The George Washington University School of Medicine, Washington, DC 20052, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jharna R. Das
1Center for Genetic Medicine Research, Children's National Hospital, Washington, DC 20010, USA
2Department of Pediatrics, The George Washington University School of Medicine, Washington, DC 20052, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jinliang Li
1Center for Genetic Medicine Research, Children's National Hospital, Washington, DC 20010, USA
2Department of Pediatrics, The George Washington University School of Medicine, Washington, DC 20052, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jing Yu
3Child Health Research Center, Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Patricio E. Ray
3Child Health Research Center, Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Patricio E. Ray
  • For correspondence: Pray@virginia.edu

Handling Editor: David M. Tobin

  • Article
  • Figures & tables
  • Supp info
  • Info & metrics
  • PDF + SI
  • PDF
Loading

ABSTRACT

Modern antiretroviral therapies (ART) have decreased the prevalence of HIV-associated nephropathy (HIVAN). Nonetheless, we continue to see children and adolescents with HIVAN all over the world. Furthermore, once HIVAN is established in children, it is difficult to revert its long-term progression, and we need better animal models of childhood HIVAN to test new treatments. To define whether the HIV-1 trans-activator (Tat) gene precipitates HIVAN in young mice, and to develop an inducible mouse model of childhood HIVAN, an HIV-Tat gene cloned from a child with HIVAN was used to generate recombinant adenoviral vectors (rAd-Tat). rAd-Tat and LacZ control vectors (2×109) were expressed in the kidney of newborn wild-type and HIV-transgenic (Tg26) FVB/N mice without significant proteinuria (n=5; 8 per group). Mice were sacrificed 7 and 35 days later to assess their renal outcome, the expression of HIV-genes and growth factors, and markers of cell growth and differentiation by RT-qPCR, immunohistochemistry and/or western blots. HIV-Tat induced the expression of HIV-1 genes and heparin-binding growth factors in the kidney of HIV-Tg26 mice, and precipitated HIVAN in the first month of life. No significant renal changes were detected in wild-type mice infected with rAd-Tat vectors, suggesting that HIV-Tat alone does not induce renal disease. This new mouse model of childhood HIVAN highlights the critical role that HIV-Tat plays in the pathogenesis of HIVAN, and could be used to study the pathogenesis and treatment of HIVAN in children and adolescents.

Footnotes

  • Competing interests

    The authors declare no competing or financial interests.

  • Author contributions

    Conceptualization: P.T., P.E.R.; Methodology: P.T., J.R.D., J.L., J.Y., P.E.R.; Formal analysis: J.R.D., J.L., J.Y.; Investigation: P.T., J.R.D., J.L.; Writing - original draft: P.T.; Writing - review & editing: J.Y., P.E.R.; Supervision: P.E.R.; Funding acquisition: P.E.R.

  • Funding

    This study was supported by the National Institutes of Health (R01 DK-108368, R01 DK-115968 and R01 DK-04941 to P.E.R.).

  • Data availability

    Tat-HIVAN data is available from GenBank under accession number MT936880.

  • Supplementary information

    Supplementary information available online at https://dmm.biologists.org/lookup/doi/10.1242/dmm.045641.supplemental

  • Received May 6, 2020.
  • Accepted September 2, 2020.
  • © 2020. Published by The Company of Biologists Ltd
http://creativecommons.org/licenses/by/4.0

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

View Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

RSSRSS

Keywords

  • HIV-associated nephropathy
  • HIV-1
  • Children
  • Transgenic mice
  • Animal model
  • HIV-Tat

 Download PDF

Email

Thank you for your interest in spreading the word on Disease Models & Mechanisms.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
An HIV-Tat inducible mouse model system of childhood HIV-associated nephropathy
(Your Name) has sent you a message from Disease Models & Mechanisms
(Your Name) thought you would like to see the Disease Models & Mechanisms web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
RESEARCH ARTICLE
An HIV-Tat inducible mouse model system of childhood HIV-associated nephropathy
Pingtao Tang, Jharna R. Das, Jinliang Li, Jing Yu, Patricio E. Ray
Disease Models & Mechanisms 2020 13: dmm045641 doi: 10.1242/dmm.045641 Published 28 October 2020
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
RESEARCH ARTICLE
An HIV-Tat inducible mouse model system of childhood HIV-associated nephropathy
Pingtao Tang, Jharna R. Das, Jinliang Li, Jing Yu, Patricio E. Ray
Disease Models & Mechanisms 2020 13: dmm045641 doi: 10.1242/dmm.045641 Published 28 October 2020

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
    • ABSTRACT
    • INTRODUCTION
    • RESULTS
    • DISCUSSION
    • MATERIALS AND METHODS
    • Acknowledgements
    • Footnotes
    • References
  • Figures & tables
  • Supp info
  • Info & metrics
  • PDF + SI
  • PDF

Related articles

Cited by...

More in this TOC section

  • Heterogeneity in clone dynamics within and adjacent to intestinal tumours identified by Dre-mediated lineage tracing
  • Inducible expression of human C9ORF72 36x G4C2 hexanucleotide repeats is sufficient to cause RAN translation and rapid muscular atrophy in mice
  • Neural crest-specific deletion of Bmp7 leads to midfacial hypoplasia, nasal airway obstruction, and disordered breathing modelling Obstructive Sleep Apnea
Show more RESEARCH ARTICLE

Similar articles

Subject collections

  • Model Systems in Drug Discovery

Other journals from The Company of Biologists

Development

Journal of Cell Science

Journal of Experimental Biology

Biology Open

Advertisement

DMM and COVID-19

We are aware that the COVID-19 pandemic is having an unprecedented impact on researchers worldwide. The Editors of all The Company of Biologists’ journals have been considering ways in which we can alleviate concerns that members of our community may have around publishing activities during this time. Read about the actions we are taking at this time.

Please don’t hesitate to contact the Editorial Office if you have any questions or concerns.


Professor Elizabeth Patton appointed as DMM’s next Editor-in-Chief

We are pleased to announce that The Company of Biologists directors have appointed Professor Elizabeth Patton as DMM's new Editor-in-Chief. As Paresh Vyas writes in his Editorial, Liz ‘brings vitality and a passion for the remit of DMM, and is deeply embedded in the community.’


Did you know DMM Conference Travel Grants can be used for online meetings?

With travel restrictions still in place, we want to continue supporting early-career researchers in their careers. DMM’s Conference Travel Grants can now be used to attend virtual and online scientific meetings, workshops, conferences and training courses.

The current application round closes on 8 February 2021 – find out more.


Identification of MYOM2 as a candidate gene in hypertrophic cardiomyopathy and Tetralogy of Fallot, and its functional evaluation in the Drosophila heart

Research from Silke Sperling and colleagues uses Drosophila to identify MYOM2 as a candidate gene in congenital heart malformations in this issue’s Editor’s choice.


C. elegans as a disease model

A new Research article from Doyle et al., models spinal muscular atrophy in C. elegans to show that that targeting therapies to muscle cells is more effective than neuronal delivery. Find more research using C. elegans as a disease model in our latest subject collection.


Call for papers – The RAS Pathway: Diseases, Therapeutics and Beyond

Our upcoming special issue is now welcoming submissions until 1 April 2021. Guest-edited by Donita Brady (Perelman School of Medicine at the University of Pennsylvania, USA) and Arvin Dar (Icahn School of Medicine at Mount Sinai, USA), the issue will focus on the targeting the RAS pathway. Find out more about the issue and how to submit your manuscript.


Interview – Kim Landry-Truchon and Nicolas Houde

In an interview, first authors Kim Landry-Truchon and Nicolas Houde discuss their mouse model of the early stages of pleuropulmonary blastoma, reflecting on the implications of their work and the future of their field.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About DMM
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact DMM
  • Advertising
  • Feedback

Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992