Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About DMM
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contact
    • Contact DMM
    • Advertising
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in

Search

  • Advanced search
Disease Models & Mechanisms
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Disease Models & Mechanisms

Advanced search

RSS   Twitter   Facebook   YouTube

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About DMM
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contact
    • Contact DMM
    • Advertising
    • Feedback
FIRST PERSON
First person – Nicoleta Baxan
Disease Models & Mechanisms 2019 12: dmm041681 doi: 10.1242/dmm.041681 Published 16 August 2019
  • Article
  • Figures & tables
  • Info & metrics
  • PDF
Loading

ABSTRACT

First Person is a series of interviews with the first authors of a selection of papers published in Disease Models & Mechanisms (DMM), helping early-career researchers promote themselves alongside their papers. Nicoleta Baxan is first author on ‘Characterization of acute TLR-7 agonist-induced hemorrhagic myocarditis in mice by multi-parametric quantitative cardiac magnetic resonance imaging’, published in DMM. Nicoleta conducted the research described in this article while in Dr Susanne Sattler's lab at Imperial College London, UK. She is now an MR Physics Research Associate in the lab of Prof. Lan Zhao at Biological Imaging Centre, Imperial College London, UK, investigating the development of novel multi-parametric cardiac magnetic resonance (CMR) tissue-mapping techniques to make progress in the diagnosis and treatment of heart diseases.

Embedded Image

Nicoleta Baxan

How would you explain the main findings of your paper to non-scientific family and friends?

Immune-mediated damage to the heart may occur as the result of a wide variety of underlying conditions, including infectious disease, exposure to toxins, chemotherapeutic agents, and systemic inflammation due to autoimmune disease. CMR mapping provides unique information of tissue damage in inflammatory disease by tracking subtle changes in myocardium, such as specific disease pathways related to intracellular disturbances of cardiomyocytes (iron deposition); extracellular disturbances in the myocardial interstitium (fibrosis from accumulation of collagen); or both (myocardial edema and cellular infiltrate with increased intracellular and/or extracellular water). In this study, we identified a significant amount of interstitial iron in the hearts of Resiquimod-treated mice, which is most likely the result of hemorrhage, erythrocyte cell death and hemoglobin degradation. We show that chronic anti-heart autoimmunity in the Resiquimod model of systemic lupus erythematosus (SLE) follows acute thrombocytopenia and hemorrhagic myocarditis, and provide a thorough comparison of in vivo CMR parameter measurements with the underlying heart histopathology.

What are the potential implications of these results for your field of research?

Acute myocarditis may trigger an autoimmune reaction against the heart, and it is feasible that severity of hemorrhaging, acute tissue damage and subsequent autoimmunity are correlated. The ability to non-invasively discriminate different processes of tissue damage by using specific magnetic resonance imaging (MRI) metrics based on changes in myocardial parameters T1, T2, T2* will allow insight into the natural history of disease and improve our understanding of the potentially subclinical course of cardiac involvement in systemic inflammation.

“Studying genetically diverse mouse panels instead of a single inbred mouse line may reveal a range of susceptibilities.”

What are the main advantages and drawbacks of the model system you have used as it relates to the disease you are investigating?

Myocardial hemorrhage is not commonly reported in patients with myocarditis. Underlying mechanisms leading to hemorrhage in some myocarditis patients but not in others and implications on survival and subsequent development of inflammatory cardiomyopathies are far from understood. The specific phenotype of hemorrhagic myocarditis has only been studied in Resiquimod-induced systemic inflammation in CFN mice. Considering that myocardial hemorrhaging may be more common than currently appreciated in systemic inflammation of both infectious and autoimmune origin, as well as directly heart-targeted infections, these processes need to be characterized in the corresponding mouse models. Considering that only a small proportion of human patients develop clinically detected hemorrhagic myocarditis, there is likely to be a genetic component to disease susceptibility. Studying genetically diverse mouse panels instead of a single inbred mouse line may reveal a range of susceptibilities.

In acute stage, the mouse model used in this study closely mimics physiological responses to a viral infection due to the stimulation of the TLR-7 pathway. TLR-7 is a pattern-recognition receptor involved in recognition of single-stranded RNA of viral origin, and is thus crucial in host defense against viral infections. Artificial over-activation of this virus defense system may cause the same phenomena as seen in severe complications of viral infection (thrombocytopenia with local hemorrhages at sites of inflammation).

Figure1
  • Download figure
  • Open in new tab
  • Download powerpoint

T2* mapping reveals severe cardiac iron deposition in Resiquimod-treated mice. Representative T2* maps of mid-section left ventricle with corresponding Perls Prussian Blue-stained paraffin-embedded heart sections of Resiquimod-treated and control mice showing significant iron deposition. High-magnification images of tissue areas with iron deposition (Perls Prussian Blue) are illustrated to the right.

What has surprised you the most while conducting your research?

I am constantly amazed by the power of multidisciplinary research, and this project is a true example of it. I am an MR physicist by training, and the collaborative nature of this project gave me the opportunity to work with amazing and highly skilled researchers coming from different disciplines (biology, clinical sciences, pharmacology, etc.). Bringing together multiple disciplines brought this paper to light (and most of my research so far), and this almost certainly wouldn't have been done by focusing on a single area.

“I am constantly amazed by the power of multidisciplinary research, and this project is a true example of it.”

Describe what you think is the most significant challenge impacting your research at this time and how will this be addressed over the next 10 years?

The technical challenges of acquiring CMR data synchronized with the cardiac motion combined with the relatively poor pathological specificity of CMR may affect the scan time, the analysis and interpretation of data. New emerging techniques based on artificial intelligence and machine learning approaches are bringing exciting possibilities of faster data acquisition and automated AI-driven quantitative analysis, eliminating many tedious, manual tasks. This will provide enormous opportunities to homogenize data acquisition and computation to better characterize disease by imaging.

“I believe that giving full confidence, responsibility and credit to early-career scientists to conduct their research independently is crucial for their future career.”

What changes do you think could improve the professional lives of early-career scientists?

I am very lucky to have a very supportive PI, giving me the chance to be autonomous in my work and in my projects. I am constantly learning and improving my skills of setting new collaborative projects, presenting my findings and networking. I believe that giving full confidence, responsibility and credit to early-career scientists to conduct their research independently is crucial for their future career.

Footnotes

  • Nicoleta Baxan's contact details: Biological Imaging Centre, Department of Medicine, Imperial College London, London, UK.

    E-mail: n.baxan{at}imperial.ac.uk

  • © 2019. Published by The Company of Biologists Ltd
http://creativecommons.org/licenses/by/4.0

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

Reference

  1. ↵
    1. Baxan, N.,
    2. Papanikolaou, A.,
    3. Salles-Crawley, I.,
    4. Lota, A.,
    5. Chowdhury, R.,
    6. Dubois, O.,
    7. Branca, J.,
    8. Hasham, M. G.,
    9. Rosenthal, N.,
    10. Prasad, S. K. et al.
    (2019). Characterization of acute TLR-7 agonist-induced hemorrhagic myocarditis in mice by multi-parametric quantitative cardiac magnetic resonance imaging. Dis. Model. Mech. 12, dmm040725. doi:10.1242/dmm.040725
    OpenUrlAbstract/FREE Full Text
View Abstract
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

RSSRSS

 Download PDF

Email

Thank you for your interest in spreading the word on Disease Models & Mechanisms.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
First person – Nicoleta Baxan
(Your Name) has sent you a message from Disease Models & Mechanisms
(Your Name) thought you would like to see the Disease Models & Mechanisms web site.
Share
FIRST PERSON
First person – Nicoleta Baxan
Disease Models & Mechanisms 2019 12: dmm041681 doi: 10.1242/dmm.041681 Published 16 August 2019
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
FIRST PERSON
First person – Nicoleta Baxan
Disease Models & Mechanisms 2019 12: dmm041681 doi: 10.1242/dmm.041681 Published 16 August 2019

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
    • ABSTRACT
    • Footnotes
    • Reference
  • Figures & tables
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • First person – Trace Stay
  • First person – Yong Chen
  • First person – Celia Cordero-Sanchez
Show more FIRST PERSON

Similar articles

Other journals from The Company of Biologists

Development

Journal of Cell Science

Journal of Experimental Biology

Biology Open

Advertisement

Editor’s choice – Perturbed development of cranial neural crest cells in association with reduced sonic hedgehog signaling underlies the pathogenesis of retinoic-acid-induced cleft palate

Schematic showing that excessive RA signaling reduces Shh signaling, which results in elevated cell death of CNCCs and cleft palate.

Takashi Yamashiro and colleagues identify the critical role of the retinoic acid-Sonic hedgehog signalling pathway in cranial neural crest and palate development.


Featured article – Deep learning enables automated volumetric assessments of cardiac function in zebrafish

A graphical 3D reconstruction of ventricular EDV and ESV as measured by CFIN.

A new Resource article by Nguyen et al. describes CFIN, a novel deep learning image analysis platform to assess cardiac function in embryonic zebrafish. 


Review – CRISPR/Cas9-mediated genome editing in nonhuman primates

Two pictures of non-human primates commonly used in genome editing research.

Yuyu Niu and colleagues summarise the history of genome editing in non-human primates and discusses the challenges and prospects of the technology.


First person interviews

Pictures of Alexander and Jocelyn.

Have you seen our interviews with the early-career first authors of our papers? Recently, we caught up with Alexander Akerberg and Jocelyn Wessels. 


Travelling Fellowship – New imaging approach unveils a bigger picture

Highlights from Travelling Fellowships trips.

Find out how Pamela Imperadore’s Travelling Fellowship grant from The Company of Biologists took her to Germany, where she used new imaging techniques to investigate the cellular machinery underlying octopus arm regeneration. Don’t miss the next application deadline for 2020 travel, coming up on 29 November. Where will you go?


preLights – HSP110 dependent HSP70 disaggregation machinery mediates prion-like propagation of amyloidogenic proteins in metazoa

preLights logo

Highlighted by Tessa Sinnige, a recent preprint from Carmen Nussbaum-Krammer and co-workers shows that Hsp110 activity protects against amorphous protein aggregation but promotes amyloid aggregation and toxicity in C. elegans models.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About DMM
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact DMM
  • Advertising
  • Feedback

Twitter   YouTube   LinkedIn

© 2019   The Company of Biologists Ltd   Registered Charity 277992