Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About DMM
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contact
    • Contact DMM
    • Advertising
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in

Search

  • Advanced search
Disease Models & Mechanisms
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Disease Models & Mechanisms

Advanced search

RSS   Twitter   Facebook   YouTube

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Subject collections
    • Interviews
    • Sign up for alerts
  • About us
    • About DMM
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Outstanding paper prize
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contact
    • Contact DMM
    • Advertising
    • Feedback
EDITORIAL
Zebrafish knock-ins swim into the mainstream
Sergey V. Prykhozhij, Jason N. Berman
Disease Models & Mechanisms 2018 11: dmm037515 doi: 10.1242/dmm.037515 Published 24 October 2018
Sergey V. Prykhozhij
1Department of Pediatrics, Dalhousie University, IWK Health Centre, Halifax, NS B3K 6R8, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Sergey V. Prykhozhij
Jason N. Berman
1Department of Pediatrics, Dalhousie University, IWK Health Centre, Halifax, NS B3K 6R8, Canada
2Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
3Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jason N. Berman
  • For correspondence: jason.berman@iwk.nshealth.ca
  • Article
  • Figures & tables
  • Info & metrics
  • PDF
Loading

ABSTRACT

The zebrafish is an increasingly popular model organism for human genetic disease research. CRISPR/Cas9-based approaches are currently used for multiple gene-editing purposes in zebrafish, but few studies have developed reliable ways to introduce precise mutations. Point mutation knock-in using CRISPR/Cas9 and single-stranded oligodeoxynucleotides (ssODNs) is currently the most promising technology for this purpose. Despite some progress in applying this technique to zebrafish, there is still a great need for improvements in terms of its efficiency, optimal design of sgRNA and ssODNs and broader applicability. The papers discussed in this Editorial provide excellent case studies on identifying problems inherent in the mutation knock-in technique, quantifying these issues and proposing strategies to overcome them. These reports also illustrate how the procedures for introducing specific mutations can be straightforward, such that ssODNs with only the target mutation are sufficient for generating the intended knock-in animals. Two of the studies also develop interesting point mutant knock-in models for cardiac diseases, validating the translational relevance of generating knock-in mutations and opening the door to many possibilities for their further study.

  • © 2018. Published by The Company of Biologists Ltd
http://creativecommons.org/licenses/by/3.0

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

View Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

RSSRSS

Keywords

  • CRISPR/Cas9
  • Genome editing
  • Point mutations
  • Zebrafish

 Download PDF

Email

Thank you for your interest in spreading the word on Disease Models & Mechanisms.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Zebrafish knock-ins swim into the mainstream
(Your Name) has sent you a message from Disease Models & Mechanisms
(Your Name) thought you would like to see the Disease Models & Mechanisms web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
EDITORIAL
Zebrafish knock-ins swim into the mainstream
Sergey V. Prykhozhij, Jason N. Berman
Disease Models & Mechanisms 2018 11: dmm037515 doi: 10.1242/dmm.037515 Published 24 October 2018
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
EDITORIAL
Zebrafish knock-ins swim into the mainstream
Sergey V. Prykhozhij, Jason N. Berman
Disease Models & Mechanisms 2018 11: dmm037515 doi: 10.1242/dmm.037515 Published 24 October 2018

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
    • ABSTRACT
    • Introduction
    • The focus on technology
    • Modeling diseases via knock-ins with short oligos
    • Conclusions
    • References
  • Figures & tables
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • The twin pillars of Disease Models & Mechanisms
  • From its roots come branches and growth for Disease Models & Mechanisms
  • Disease Models & Mechanisms announces a new Editor-in-Chief
Show more EDITORIAL

Similar articles

Subject collections

  • Zebrafish as a Disease Model
  • Editorials

Other journals from The Company of Biologists

Development

Journal of Cell Science

Journal of Experimental Biology

Biology Open

Advertisement

DMM and COVID-19

We are aware that the COVID-19 pandemic is having an unprecedented impact on researchers worldwide. The Editors of all The Company of Biologists’ journals have been considering ways in which we can alleviate concerns that members of our community may have around publishing activities during this time. Read about the actions we are taking at this time.

Please don’t hesitate to contact the Editorial Office if you have any questions or concerns.


Monica Justice bids farewell to DMM

In her farewell Editorial, outgoing Editor-in-Chief Monica Justice reminds us of the past half-decade of growth and of DMM's commitment to support the disease modelling community, concluding, “The knowledge and experience I gained during my time as Senior Editor and EiC at DMM is invaluable: working within a not-for-profit community publishing environment is a joy.”


3D imaging of beta cell mass in diabetic mouse models

In their inducible mouse model of diabetes, Roostalu et al. demonstrate how quantitative light-sheet imaging can capture changes in individual islets to help pharmacological research in diabetes.

Visit our YouTube channel to watch more videos from DMM, our sister journals and the Company.


Modelling Joubert syndrome patient-derived mutations in C. elegans

In this issue’s Editor’s choice, Karen Lange and colleagues used C. elegans to model and characterise two patient-derived mutations that cause the ciliopathy Joubert syndrome.


Interview – Karen Lange

First author of our current Editor’s choice, Karen Lange takes us behind the scenes of the paper, and shares her thoughts on how the lack of both time and job security will impact her research.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Subject collections
  • Interviews
  • Sign up for alerts

About us

  • About DMM
  • Editors and Board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact DMM
  • Advertising
  • Feedback

Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992