ABSTRACT
Ocular anterior segment dysgenesis (ASD) describes a spectrum of clinically and genetically heterogeneous congenital disorders affecting anterior structures that often lead to impaired vision. More importantly, 50-75% of patients with ASD develop early onset and aggressive glaucoma. Although several genes have been implicated in the etiology of ASD, the underlying mechanisms remain elusive. Type IV collagen alpha 1 (COL4A1) is an extracellular matrix protein and a critical component of nearly all basement membranes. COL4A1 mutations cause multi-system disorders in patients, including ASD (congenital cataracts, Axenfeld-Rieger's anomaly, Peter's anomaly and microphthalmia) and congenital or juvenile glaucoma. Here, we use a conditional Col4a1 mutation in mice to determine the location and timing of pathogenic events underlying COL4A1-related ocular dysgenesis. Our results suggest that selective expression of the Col4a1 mutation in neural crest cells and their derivatives is not sufficient to cause ocular dysgenesis and that selective expression of the Col4a1 mutation in vascular endothelial cells can lead to mild ASD and optic nerve hypoplasia but only on a sensitized background. In contrast, lens-specific expression of the conditional Col4a1 mutant allele led to cataracts, mild ASD and optic nerve hypoplasia, and age-related intraocular pressure dysregulation and optic nerve damage. Finally, ubiquitous expression of the conditional Col4a1 mutation at distinct developmental stages suggests that pathogenesis takes place before E12.5. Our results show that the lens and possibly vasculature play important roles in Col4a1-related ASD and that the pathogenic events occur at mid-embryogenesis in mice, during early stages of ocular development.
Footnotes
Competing interests
The authors declare no competing or financial interests.
Author contributions
M.M., M.K., and Y.O. carried out the experiments and analyzed the data. M.M. and D.B.G. conceived and designed the experiments and wrote the manuscript.
Funding
This work was supported by the National Institutes of Health (NIH) (EY019887 to D.B.G., P30 EY002162), Research to Prevent Blindness (D.B.G.), That Man May See (M.M. and D.B.G.) and Knights Templar Eye Foundation (M.M.).
Supplementary information
Supplementary information available online at http://dmm.biologists.org/lookup/doi/10.1242/dmm.027888.supplemental
- Received September 22, 2016.
- Accepted February 20, 2017.
- © 2017. Published by The Company of Biologists Ltd
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.