ABSTRACT

The translation of basic research into improved therapies for breast cancer patients requires relevant preclinical models that incorporate spontaneous metastasis. We have completed a functional and molecular characterisation of a new isogenic C57BL/6 mouse model of breast cancer metastasis, comparing and contrasting it with the established BALB/c 4T1 model. Metastatic EO771.LMB tumours were derived from poorly metastatic parental EO771 mammary tumours. Functional differences were evaluated using both in vitro assays and spontaneous metastasis assays in mice. Results were compared to non-metastatic 67NR and metastatic 4T1.2 tumours of the 4T1 model. Protein and transcript levels of markers of human breast cancer molecular subtypes were measured in the four tumour lines, as well as p53 (Tp53)-null. Integrated molecular assessment of intrinsic events within the tumour cells, they lack the indicated that upregulation of matrix metalloproteinase-3 (MMP-3), parathyroid hormone-like hormone (Pthlh) and S100 calcium binding protein A8 (S100a8) and downregulation of the thrombospondin receptor (Cd36) might be causally involved in metastatic dissemination of breast cancer.

KEY WORDS: Breast cancer, Syngeneic preclinical models, Metastasis, Tumour subtyping, Estrogen receptor alpha

INTRODUCTION

The high mortality rate associated with advanced breast cancer is due primarily to the growth of metastases, mainly targeting liver, lung, bone and brain. Treating metastatic disease poses many challenges owing to a lack of knowledge of the critical molecular targets for therapy and to the acquisition of resistance both to standard chemotherapy and targeted therapies such as selective estrogen receptor modulators (SERMs) and the anti-HER2 (human epidermal growth factor receptor 2; also known as Erb-b2) antibody, trastuzumab (Eckhardt et al., 2012). The genetic diversity between different tumours and the inherent heterogeneity of individual breast lesions poses additional challenges (Russnes et al., 2011; Stephens et al., 2012).

Gene expression profiling of breast tumours has led to the identification of up to ten subtypes in humans (Curtis et al., 2012; The Cancer Genome Atlas Network, 2012; Lehmann et al., 2011; Perou et al., 2000; Sørlie et al., 2001) and many subtypes in transgenic mouse models of breast cancer (Herschkowitz et al., 2007; Pfefferle et al., 2013). These include the well-accepted luminal A, luminal B, basal-like and HER2-enriched subtypes (Blows et al., 2012). The genetic diversity between different tumours and the inherent heterogeneity of individual breast lesions poses additional challenges (Russnes et al., 2011; Stephens et al., 2012).

Immunohistochemical phenotyping of tumours has identified the minimum set of biomarkers required to distinguish these groups; in particular, basal-like and triple-negative (ER-, PR- and HER2-negative) tumours (Blows et al., 2010; Cheang et al., 2008; Nielsen et al., 2004). However, more relevant prognostic biomarkers and therapeutic targets are now required within each of the molecular subtypes of human breast cancer, but especially for basal-like and triple-negative tumours, for which no targeted therapies currently exist.

Mouse models of breast cancer include those in which xenografts, either from human cell lines or directly from patients, are transplanted into immunocompromised hosts (DeRose et al., 2011). However, it is becoming increasingly evident that faithful tumour-stromal interactions are very important for clinically relevant tumour progression and metastasis. Although xenografts are of value for the assessment of intrinsic events within the tumour cells, they lack the
TRANSLATIONAL IMPACT

Clinical issue
Metastatic disease is the most common cause of major morbidity and death in cancer patients. Approximately 20% of individuals with breast cancer ultimately die from the disease, nearly all owing to the onset of incurable metastatic disease. Hence, research efforts should focus on the identification of metastasis-regulating genes and on the development of new therapies that could prevent the expansion of secondary metastatic lesions. An essential component of development and testing of new pharmacological agents is the assessment of their efficacy in preclinical settings prior to clinical trials. However, very few preclinical models that incorporate the relevant features of human metastatic disease are available. To be relevant to human metastatic breast cancer, these preclinical models should incorporate tumours that are derived from syngeneic (genetically identical) animals – so that they can retain an intact immune system – and tumours should be implanted orthotopically (in the area in which the cancer typically arises). Because breast cancer comprises different tumour subtypes, each requiring different clinical management, it is necessary to develop a range of preclinical models that can reflect this heterogeneity.

Results
In this work, the authors describe a new mouse model of metastatic breast cancer based on a spontaneous mammary tumour that arose in a C57BL/6 mouse. From this line, designated EO771, they have derived a tumour variant that is metastatic to the lung (called EO771.LMB). The functional characteristics of EO771 and EO771.LMB tumour lines were compared to those of a pre-existing and widely used mouse model of metastatic mammary cancer, using immunohistochemistry and molecular analyses. By immunohistochemistry, EO771 and EO771.LMB lines were classified as a basal-like tumour, a subtype with poor prognosis in humans. Integrated molecular analysis of these tumours revealed important genes – including those that encode matrix metalloproteinase-3 (MMP-3) and parathyroid hormone-like hormone (Pthlh) – whose dysregulation might be causally involved in metastatic dissemination of breast cancer.

Implications and future directions
This new EO771 metastasis model will provide a valuable option for assessing genes that regulate metastasis and for developing new therapies that might be beneficial for individuals with poor-outcome basal-like tumours, who have a higher probability of developing metastatic disease. A further advantage of this model is that it grows in vivo; therefore, tumours derived from this new model will be valuable for analysing the contribution of specific host-derived genes to the metastatic process.

RESULTS

In vitro and in vivo characterisation of EO771.LMB: a new syngeneic model of metastatic breast cancer
EO771.LMB was isolated from a rare metastatic lung nodule that had disseminated from an orthotopic primary tumour of the original EO771 mammary adenocarcinoma cell line, derived from a spontaneous mammary tumour in a female C57BL/6 mouse (Casey et al., 1951). Herein, we have characterised the in vitro and in vivo phenotypes of the EO771 and EO771.LMB lines. In addition, immunohistochemical profiles of EO771 and EO771.LMB tumours were obtained and compared to those of non-metastatic (67NR) and highly metastatic (4T1.2) tumours from the 4T1 BALB/c model. Array-based gene expression profiling was conducted to identify genes commonly dysregulated in metastatic tumours from both isogenic pairs.

Based on immunohistochemical analyses using a five-marker panel and array-based gene expression profiling, we show that these four tumours display features of both luminal and basal-like subtypes. Expression profiling of the isogenic non-metastatic/metastatic pairs identified the genes encoding matrix metalloproteinase-3 (MMP-3), S100 calcium binding protein A8 (S100a8), S100a9 and parathyroid hormone-like hormone (Pthlh) as possible drivers of metastatic progression.

orthologous extracellular matrix (ECM), the species-matched stromal-tumour interactions and a functional immune system. Syngeneic mouse models of breast cancer, either transgenic or transplantable, overcome these limitations. Transgenic mouse mammary tumour models are of great value to preclinical studies because they incorporate the initiation of the primary tumour. However, with some exceptions, including the murine mammary tumour virus (MMTV)-polyoma middle T antigen (PyMT) (Guy et al., 1992a) and the MMTVneuNT transgenic mice (Guy et al., 1992b; Moody et al., 2002; Muller et al., 1988), the timeframe for tumour development is often months, and metastasis is generally limited to a modest number of lung nodules (Varticovski et al., 2007).

For transplantable models, the tumour cells can be inoculated into the mammary gland as an allograft with genetic and immunological compatibility and the resulting tumours often progress extensively beyond localised growth within a timeframe of weeks rather than months (Varticovski et al., 2007). Genetic manipulation of the cells prior to tumour establishment is also easily achievable. Thus, for studies relating to spontaneous metastasis, transplantable models offer a valuable and cost-efficient alternative. These models are generally established from tumour cells isolated from spontaneous mammary tumours in mice (Aslakson and Miller, 1992; Casey et al., 1951; Lelekakis et al., 1999; Rockwell and Kallman, 1973). The BALB/c isogenic series of mammary tumour lines collectively known as ‘the 4T1 model’ has been the principal transplantable mouse model used to study both tumour- and host-derived factors involved in spontaneous metastasis (Aslakson and Miller, 1992; Eckhardt et al., 2005; Kusuma et al., 2012).

Studies of host-derived factors in oncogenesis are facilitated by inoculating cells into mice that are deficient for the gene under study. Because the majority of genetically ‘pure’ knockout mice have been generated on, or backcrossed onto, the C57BL/6 background, it is desirable to have metastatic transplantation models in this strain. However, C57BL/6 mice are more resistant than BALB/c mice to mammary tumorigenesis induced by p53 loss (Kuperwasser et al., 2000) and are more resistant to metastasis (Hunter, 2012; Lifsted et al., 1998). Moreover, the role of specific host factors in tumour progression can vary depending on the mouse strain used (Martin et al., 2008).

We have now developed and characterised a new syngeneic mouse model of metastatic breast cancer in C57BL/6 mice. EO771.LMB cells were isolated from a rare metastatic lung nodule that had disseminated from an orthotopic primary tumour of the original EO771 mammary adenocarcinoma cell line, derived from a spontaneous mammary tumour in a female C57BL/6 mouse (Casey et al., 1951). Herein, we have characterised the in vitro and in vivo phenotypes of the EO771 and EO771.LMB lines. In addition, immunohistochemical profiles of EO771 and EO771.LMB tumours were obtained and compared to those of non-metastatic (67NR) and highly metastatic (4T1.2) tumours from the 4T1 BALB/c model. Array-based gene expression profiling was conducted to identify genes commonly dysregulated in metastatic tumours from both isogenic pairs.

Based on immunohistochemical analyses using a five-marker panel and array-based gene expression profiling, we show that these four tumours display features of both luminal and basal-like subtypes. Expression profiling of the isogenic non-metastatic/metastatic pairs identified the genes encoding matrix metalloproteinase-3 (MMP-3), S100 calcium binding protein A8 (S100a8), S100a9 and parathyroid hormone-like hormone (Pthlh) as possible drivers of metastatic progression.
Fig. 1. Functional characterisation of the parental EO771 tumour line and its metastatic variant, EO771>LMB. (A) Parental EO771 (n=10) and metastatic variant EO771>LMB (n=5) primary tumour volumes were measured three times per week following implantation of cells into the mammary gland of C57BL/6 mice [mean tumour volume (mm³) ± s.d.]. (B) Primary tumour weights following resection on day 13 after implantation (mean weight ± s.d.; n=8, EO771; n=9, EO771>LMB). (C) Tumour burden in the lungs (mean ± s.d.) measured by qPCR quantification of mCherry DNA in genomic DNA isolated from whole lungs 2 weeks following primary tumour resection (n=8, EO771; n=9, EO771>LMB). (D,E) Superimposed brightfield/fluorescent image of lungs from EO771- (D) or EO771>LMB- (E) tumour-bearing mice. Arrows indicate tumour nodules. (F,G) Hematoxylin- and eosin-stained lung sections from an EO771- (F) or EO771>LMB- (G) bearing mouse. Magnification: 40×. T: metastatic tumour deposit. (H) Proliferation of EO771 and EO771>LMB cells (mean ± s.d. of 12 replicate wells of one of three representative experiments). (I) Adhesion of EO771 and EO771>LMB cells to different substrates after 30 min. Adhesion is represented as the percentage of total cell input [mean of triplicate wells ± s.d. of a representative experiment (n=3) is shown]. (J) Chemotactic migration towards serum-free medium (SFM) or 5% (v/v) FBS after 5 hours and haptotactic migration towards laminin-511 or vitronectin after 4 hours, using Transwell inserts. The number of migrated cells was counted from three fields of view per membrane at 20x magnification (mean ± s.d. of one of three independent experiments). (K) Chemotactic and haptotactic invasion through Matrigel towards 5% (v/v) FBS or laminin-511 using Transwell inserts. The assay was run for 18 hours in triplicate wells and the number of invaded cells counted from three fields of view per membrane at 20x magnification. The data represent the mean number of invaded cells ± s.d. of one of two independent experiments. (L) Gelatin zymography of triplicate EO771 and EO771>LMB (LMB) conditioned medium from cells cultured on plastic (upper panel). The positions of molecular weight (MW) markers are shown on the left. The locations of proMMP-9 and MMP-2 are indicated on the right. Mean proMMP-9 band intensity was sixfold higher for EO771>LMB compared with EO771 (P=0.0003). Conditioned medium from primary culture of whole bone explant (bone), 67NR and 4T1.2 cells were used as positive controls for active MMP-9 (act-MMP-9) to distinguish from proMMP-9 produced by EO771 lines (lower panel). (M) qRT-PCR analysis of MMP-9 mRNA levels in mouse mammary tumour cell lines cultured on plastic or laminin-511 (LN-511, 2 μg/ml). Triplet cultures were set up for each condition and triplicate PCR reactions run for each culture. Thus, each data point represents the mean ± s.d. from nine PCR reactions. Mean expression in EO771 on plastic was set to one. Statistical significance in B,C,I,J,K and M was determined using the Student’s t-test, whereas that in A and H were determined using two-way ANOVA. *P<0.05; **P<0.01; n/s, not significant.
cell lines cultured
EO771.LMB cells were compared to parental EO771 cells. There
did not reach statistical significance (supplementary material
Fig. S2). Fluorescence imaging of the mCherry-positive nodules
(Fig. 1D,E) and histological analysis (Fig. 1F,G) revealed the
presence of large metastatic nodules in mice with EO771.LMB
tumours. Metastasis to bone was not detected (data not shown). It
is important to note that counting only visible nodules will miss the
inclusion of micrometastases or those within the lung parenchyma.
However, the trend towards more visible, and hence larger, nodules
on the lungs of EO771LMB-bearing mice might be due to earlier
release of tumour cells from the primary tumour, resulting in earlier
homing of tumour cells to lung and larger metastatic nodules. No
difference in lung colonising ability was found between EO771 and
EO771.LMB cells in experimental metastasis assays following
intravenous inoculation of cells, with both lines giving rise to
extensive lung metastasis (supplementary material Fig. S3),
indicating key differences between the two lines in the early steps
of metastasis.

Using a suite of in vitro surrogate assays for metastasis,
EO771.LMB cells were compared to parental EO771 cells. There
was no morphological distinction between EO771 and EO771.LMB
cell lines cultured in vitro (supplementary material Fig. S4), with
both lines displaying an undifferentiated spindle-shaped
morphology. However, the EO771 and EO771.LMB cells were
larger and had a more elongated shape compared with the 4T1.2
cells. As found in vivo, EO771 and EO771.LMB cells proliferated
at the same rate when cultured in vitro (Fig. 1H). Thus, enhanced
proliferation does not account for the increased metastatic capacity
of EO771.LMB tumours. Similarly, no significant differences were
found between the two lines in their ability to grow independent of
anchorage in soft agar (supplementary material Fig. S5), nor in their
capacity to form mammospheres (supplementary material Fig. S6).
The number and size of the mammospheres formed by day 10 as
primary cultures or by day 7 as secondary mammosphere cultures
was similar between the two lines (supplementary material Fig. S6).
Thus, we cannot conclude that there are any differences in potential
numbers of metastasis-initiating cells between the two lines.

Interaction with the surrounding stroma is an important factor in
metastatic dissemination (Bhowmick et al., 2004; Pouliot et al.,
2013; Zetter, 1993). Hence, the ability to adhere to various ECM
proteins that are present in the microenvironment was measured
(Prince et al., 2002). Both lines showed strongest adhesion to
laminin-511, whereas EO771.LMB cells had a slightly reduced
ability to adhere to vitronectin (Fig. 1I). Neither EO771 nor
EO771.LMB were motile towards fetal bovine serum (FBS) in
chemotactic migration assays but demonstrated robust motility in
haptotactic migration assays towards laminin-511 and to a lesser
extent towards vitronectin (Fig. 1J). However, there were no
differences between the two lines on either substrate. Although both
lines were poorly invasive toward FBS (Fig. 1K), EO771.LMB
showed markedly increased haptotactic invasion through Matrigel
toward laminin-511 compared with EO771 (Fig. 1K). As a
comparison, metastatic 4T1.2 cells were slightly more adherent than
67NR cells on most substrates, with both lines remaining only
weakly adherent to collagen I, collagen IV and fibronectin.
However, 4T1.2 adhesion to vitronectin and laminin-511 was
increased in EO771.LMB tumour-bearing mice, but this difference
was not statistically significant (supplementary material Fig. S7),
consistent with previous results using Matrigel as the substrate (Eckhardt et al., 2005). We have
shown previously that 4T1-derived metastatic variants display
higher chemotactic migration and invasion than 67NR cells
(Eckhardt et al., 2005), and are particularly migratory and invasive
towards laminin-511 (Chia et al., 2007; Kusuma et al., 2012). These
responses are dependent in part on gelatinase activity (Denoyer et
al., 2014; Sloan et al., 2006). Gelatin zymography assays revealed
the presence of both MMP-2 and MMP-9 in the culture supernatants
of EO771 and EO771.LMB (Fig. 1L, upper panel), with
EO771.LMB showing sixfold higher MMP-9 protein levels
compared with EO771 cells. Only pro-MMP-9 was detected in
EO771 or EO771LMB cells in vitro (Fig. 1L, lower panel). The
absence of detectable active MMP-9 in EO771 and EO771LMB
monocultures is likely to be due to the relatively low abundance of
MMP-9 in these cultures compared to the levels in whole bone
cultures (a positive control for active MMP-9) and/or to the need for
a higher concentration of MMP-3 or other proteases present in vivo
to fully process MMP-9. As reported previously (Tester et al., 2000),
4T1.2 cells produce more active MMP-9 than do 67NR cells
(Fig. 1L, lower panel). Because laminin-511 selectively induced the
invasive capacity of EO771.LMB (Fig. 1K), we evaluated whether
engagement with this substrate modulated MMP-9 expression. Basal
MMP-9 mRNA levels in cells cultured on plastic were 4.5-fold
higher in EO771.LMB compared with EO771 (Fig. 1M), consistent with
the higher protein levels. Culturing of cells on laminin-511
significantly increased MMP-9 mRNA levels by 3.1-fold in EO771
and by 2.4-fold in EO771.LMB relative to the cells seeded on
plastic.

Immunohistochemical profiling of mouse models of breast cancer
Standard clinical phenotyping of human tumours involves
immunohistochemical staining for estrogen receptor alpha (ERα),
progesterone receptor (PR) and HER2 amplification or high
expression, to inform selection of therapy. Additional staining for
cytokeratin 5/6 (KRT5/6), epidermal growth factor receptor (EGFR)
and Ki-67 has also been used as a surrogate for gene expression
profiling to allocate tumours to luminal A, luminal B, HER2 or
basal-like molecular subtypes (Blows et al., 2010). Inclusion of the
three additional markers better predicts survival (Cheang et al.,
2008) and loco-regional relapse (Voduc et al., 2010).

Thus, primary EO771 and EO771.LMB tumours were analysed by
immunohistochemistry (Fig. 2) for markers of the luminal A/B
subtypes (ERα, ERβ, PR), the HER2 subtype (Erb-b2/Neu) and the
basal-like subtype (KRT5/6, EGFR) and compared to 67NR and
4T1.2 tumours. ERα is located in the nuclei of primary human breast
cancers (Pertschuk et al., 1985) and ERα-positive MCF7 xenografts,
but is absent in the triple-negative MDA-MB-231 tumours
(supplementary material Fig. S8). 67NR tumours revealed nuclear
ERα positivity as well as diffuse cytoplasmic staining. Nuclear
staining was negligible in the other three tumours, which instead
showed diffuse cytoplasmic positivity (Fig. 2). Cytoplasmic ERα is
also present at low incidence in human breast cancer specimens
(Welsh et al., 2012), but the significance of this localisation is not
known. The closely related ERβ protein, which is required for
normal terminal differentiation of the murine mammary gland
(Förster et al., 2002), was not present in any of the tumours (Fig. 2).
Similarly, all four tumours were negative for PR and Erb-b2/Neu
protein. In humans, tumours are considered basal-like if they are
negative for nuclear ERα, PR and HER2 (triple-negative) but
positive for KRT5/6 or EGFR (Carey et al., 2006; Cheang et al.,
2008; Nielsen et al., 2004). All four tumours were negative for
KRT5/6 protein but positive for EGFR staining (Fig. 2). Therefore, immunohistochemical analysis indicates that 4T1.2, EO771 and EO771.LMB have a triple-negative and basal-like phenotype, whereas 67NR, owing to the presence of nuclear ERα, displays a mixed luminal/basal phenotype.

p53 status of mouse mammary tumours

Mutations in p53 are associated with the basal-like subtype of breast cancer (Carey et al., 2006). Because point mutations in p53 stabilise the protein, a positive signal by immunohistochemistry is commonly used as a surrogate marker of tumours bearing a missense mutation (Wynford-Thomas, 1992; Yemelyanova et al., 2011). Both EO771 and EO771.LMB primary tumours showed uniform nuclear staining for p53, whereas 67NR and 4T1.2 were negative (Fig. 3A). Constitutive p53 expression by cultured EO771 and EO771.LMB cells was confirmed by western blot, and protein levels could not be further enhanced by exposure to ultraviolet (UV) radiation, indicating the presence of mutant p53. In contrast, p53 is inducible in mouse embryonic fibroblasts that express wild-type p53 (Fig. 3B). Both control and UV-radiation-exposed 67NR and 4T1.2 cells were negative for p53, which is in agreement with earlier reports on the 4T1 model (Wang et al., 1998; Yerlikaya and Erin, 2008).

Responses of murine mammary tumours to tamoxifen

Given the lack of nuclear ERα protein but the presence of diffuse cytoplasmic ERα in the EO771-derived tumours and in 4T1.2 tumours, we determined whether their growth was impacted by administration of the ERα antagonist tamoxifen to the mice, with continuous treatment beginning on the day of tumour-cell inoculation. Tamoxifen significantly inhibited growth of 67NR tumours (Fig. 4A), consistent with the presence of nuclear ERα. Tamoxifen administration had no significant effect on the growth of 4T1.2 (Fig. 4B) or EO771.LMB (Fig. 4D), but did reduce growth of EO771 tumours (Fig. 4C). To help gain insight into epithelial versus possible stromal actions of tamoxifen in vivo, proliferation in vitro...
Gene expression profiling identifies an association of MMP-3, Pthlh and S100a8 with the metastatic phenotype

To identify candidate genes that might be causal in metastatic dissemination, the array data were analysed for transcripts commonly upregulated or downregulated in both 67NR/4T1.2 and EO771/EO771.LMB isogenic pairs (supplementary material Fig. S10; Tables S2, S3). Candidate genes common to both pairs were selected for further interrogation based on fold change, P-value and extent of differential expression in the EO771/EO771.LMB pair. Differential gene expression was confirmed by qRT-PCR in whole tumours (Table 1; supplementary material Fig. S11).

Matrix metalloproteinase-3 (MMP-3) and parathyroid hormone-like hormone (Pthlh) genes encode secreted factors implicated previously in breast cancer progression (Kremer et al., 2011; Sternlicht et al., 1999). These two genes were upregulated in 4T1.2 and EO771.LMB primary tumours compared with their non-metastatic counterparts, by both microarray and qRT-PCR. The secreted neutrophil chemotactic factor calprotectin is a stable heterodimer of the related S100A8 and S100A9 proteins, although each protein is also able to form homodimers (Ehrchen et al., 2009). Both proteins are co-expressed in human breast cancers, where they are associated with aggressive tumour characteristics (Acharyya et al., 2012; Arai et al., 2008; Moon et al., 2008). Secretion of S100A8 by primary tumours has also been implicated in the formation of the pre-metastatic niche in mouse lung (Hiratsuka et al., 2008). S100A8 was elevated in both 67NR/4T1.2 and EO771/EO771.LMB tumour comparisons, although differential expression of S100A9 was found only in 4T1.2/67NR (Table 1; supplementary material Fig. S11). Two genes downregulated in metastatic tumours were also evaluated. Cd36 is a scavenger receptor for oxidized low-density lipoprotein (LDL) found on the surface of myeloid cells, erythrocytes, endothelium and adipocytes in the tumour microenvironment (Koch et al., 2011). It binds collagen and thrombospondin (Koch et al., 2011), and its loss in tumour stroma is associated with poor outcome in breast cancer (Defilippis et al., 2012). Cd36 was downregulated approximately twofold in whole metastatic tumours from each model (Table 1; supplementary material Fig. S11). Glycosylation-dependent cell adhesion molecule-1 (GlyCAM1) is a secreted proteoglycan found in high endothelial venules of lymph nodes and in murine mammary epithelium during pregnancy and lactation (Hou et al., 2000). GlyCAM1 expression has not been evaluated in human breast cancer (Lister et al., 1998). GlyCAM1 mRNA levels were strongly reduced in the more metastatic tumours from each model (Table 1; supplementary material Fig. S11). Interestingly, GlyCAM1 is induced by prolactin in murine mammary epithelium (Hou et al., 2000). Accordingly, prolactin receptor (Prlr) expression was also significantly reduced in EO771.LMB compared with EO771 (Table 1), indicating that...
attenuated Prlr signalling might be responsible for the lower GlyCAM1 levels found in EO771.LMB.

Because differential gene expression was shown in whole tumours, it was unclear whether these genes were expressed by the tumour cells, by the surrounding stroma, or by both. To check this, we evaluated expression levels of selected genes in adenocarcinoma cells isolated directly from the primary tumours by flow cytometry. MMP-3, S100a8, S100a9 and Pthlh transcripts were all upregulated significantly in isolated primary tumour cells of the metastatic variants in both pairs (Fig. 6), reflecting the deregulation observed in whole tumours. However, Cd36 levels were not significantly downregulated in the more metastatic tumour cells (Fig. 6). Thus, the reduction found in whole tumour Cd36 expression is likely to be due to deregulation in the stroma, as suggested previously (DeFilippis et al., 2012).

To determine whether differential gene expression in tumour epithelium requires the unique surroundings of the tumour microenvironment, transcript levels were also measured in cultured cells. As observed for primary tumour cells, upregulation of MMP-3 and S100a8 was also found in the in vitro comparisons of both 67NR/4T1.2 and EO771/EO771.LMB (supplementary material Fig. S12), indicating that expression of these genes in tumours is regulated in a cell autonomous way and that tumour epithelium might be the major site of expression in vivo. However, the upregulation of Pthlh and S100a9, and the downregulation of Cd36, observed in primary tumour epithelium were not found consistently
associated with worse relapse-free survival over a 20-year interval when all breast cancers were considered (supplementary material Fig. S13). However, none of these genes reached statistical significance when only basal breast cancers were analysed. On the other hand, although MMP-3 was not prognostic when all breast cancers were considered, it was prognostic of poor outcome in basal-like breast cancers (supplementary material Fig. S13). Expression of PTHLH was not associated with patient survival (data not shown).

DISCUSSION

A range of mouse models of breast cancer that incorporate appropriate stromal elements, immune surveillance and spontaneous metastasis from the mammary gland to distant organs are required for preclinical testing of novel therapeutics that prevent and/or target secondary tumours. Here, we report the establishment of a new syngeneic model of breast cancer metastasis, EO771.LMB in immunocompetent C57BL/6 mice, a background that is inherently resistant to metastasis. Functional assays indicated that the underlying reason for the increased metastatic proclivity of EO771.LMB compared with EO771 was the acquisition of enhanced matrix-dependent invasive ability. EO771.LMB expressed higher levels of MMP-9 and MMP-3 that have been shown to facilitate tumour cell invasion (Bernhard et al., 1994; Huang et al., 2009).

We compared the functional and molecular characteristics of EO771 with those of the well-established 4T1 model. Only 67NR displayed nuclear ERα and an inhibitory response to tamoxifen both in vitro and in vivo. Despite the lack of nuclear ERα, EO771 primary tumours, but not cells in culture, also responded to tamoxifen. We therefore conclude that tamoxifen might be acting through modulation of ERα activity in the tumour microenvironment in these tumours, as reported previously (Gupta et al., 2007; Pontiggia et al., 2012; Ribas et al., 2011). In luminal human breast cancer, ERα is usually co-expressed with PR (Stierer et al., 1993), and HER2 expression is usually absent. However, all four mouse tumours were negative for both PR and Erb-b2/Neu protein. Therefore, the immunohistochemical data indicate that EO771, EO771.LMB and 4T1.2 are of the core basal phenotype, defined as triple-negative, whereas each of the other three tumour types contained high-grade nuclei. An additional point of distinction is that 67NR primary tumours have a moderate level of nuclear pleomorphism, whereas each of the other three tumour types contained high-grade nuclei.

Several studies of human breast cancer also report discordance between immunohistochemical and transcriptional profiles. For example, Gazinska et al. reported that, of 142 triple-negative breast cancers, 116 basal-like cancers were identified by one of three classifiers (histology, immunohistochemistry or PAM50 gene expression). When compared to the 67NR primary tumour cell line, each of the other three tumour types contained high-grade nuclei.
However, it is likely that stromal cells contribute to S100a8 were also upregulated in the metastatic cells expression of S100a9, a binding partner for S100a8. MMP-3 and primary tumour epithelial cells of the two metastatic variants, as was expression of MMP-3, Pthlh and S100a8 was confirmed in isolated stromal cell lineages in the tumour microenvironment. Elevated levels of calprotectin in lung metastases of breast cancer patients is associated with a worse overall survival (Acharyya et al., 2012). Both S100a8 homodimers and calprotectin signal via Toll-like receptor-4 (TLR4) (Vogel et al., 2007), consistent with expression of TLR4 in all four tumour lines (data not shown). Therefore, tumour-cell-derived S100a8/a9 proteins are likely to signal in both autocrine and paracrine ways in these tumours.

Pthlh was upregulated in the metastatic tumours from both models. PTHLH encodes a 36-amino-acid mature peptide strongly implicated in multiple aspects of breast cancer progression. However, its roles are complex and yet to be completely elucidated. A germline polymorphism near PTHLH was associated with increased risk for the development of both sporadic (Ghoussaini et al., 2012) and BRCA1-mutation-associated breast cancer (Antoniou et al., 2012), and tumour expression of PTHLH promotes the formation of osteolytic lesions in bone (Guise et al., 1996; Sloan and Anderson, 2002). However, whereas Pthlh activity promoted primary tumour growth and metastatic dissemination in the MMTV-PyMT transgenic mouse model of breast cancer (Li et al., 2011), it delayed tumour initiation in the MMTV-Neu model (Fleming et al., 2009). PTHLH expression in primary human tumours was also reported to be associated with ERα positivity and reduced incidence of bone metastasis (Henderson et al., 2006), as well as improved overall survival (Henderson et al., 2006; Surowiak et al., 2003). However, other reports have indicated that primary-tumour PTHLH positivity is associated with poorer disease-free survival (Linforth et al., 2002; Yoshida et al., 2000), an effect that is enhanced if co-expressed with the PTHLH receptor (Linforth et al., 2002). The function of PTHLH as either a promoter or attenuator of cancer progression might depend on the nature of the processed PTHLH peptides present in the tumour milieu. Interestingly, a recent report

<table>
<thead>
<tr>
<th>Gene</th>
<th>Name</th>
<th>Transcript ID</th>
<th>Ratio 4T1.2:67NR</th>
<th>P-value</th>
<th>Ratio LMB:EO771</th>
<th>P-value</th>
<th>Ratio qRT-PCR 4T1.2:67NR</th>
<th>P-value</th>
<th>Ratio LMB:EO771</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMP-3</td>
<td>Matrix metalloproteinase 3</td>
<td>10583071</td>
<td>12.18</td>
<td><0.005</td>
<td>2.13</td>
<td>0.005</td>
<td>15.47</td>
<td><0.005</td>
<td>2.37</td>
<td><0.005</td>
</tr>
<tr>
<td>Pthlh</td>
<td>Parathyroid hormone-like</td>
<td>10549388</td>
<td>2.28</td>
<td>0.002</td>
<td>2.05</td>
<td>0.052</td>
<td>40.45</td>
<td><0.005</td>
<td>3.22</td>
<td>0.006</td>
</tr>
<tr>
<td>S100a8</td>
<td>S100 calcium binding protein A8</td>
<td>10499831</td>
<td>4.08</td>
<td>0.006</td>
<td>1.83</td>
<td>0.013</td>
<td>8.21</td>
<td><0.005</td>
<td>2.43</td>
<td><0.005</td>
</tr>
<tr>
<td>S100a9</td>
<td>S100 calcium binding protein A9</td>
<td>10499861</td>
<td>3.61</td>
<td><0.005</td>
<td>1.13</td>
<td>0.630</td>
<td>7.42</td>
<td><0.005</td>
<td>1.12</td>
<td>0.950</td>
</tr>
<tr>
<td>GlyCAM1</td>
<td>Glycosylation-dependent cell adhesion molecule-1</td>
<td>10433172</td>
<td>0.16</td>
<td>0.112</td>
<td>0.09</td>
<td>0.035</td>
<td>0.16</td>
<td>0.348</td>
<td>0.14</td>
<td>0.050</td>
</tr>
<tr>
<td>Prfr</td>
<td>Prolactin receptor</td>
<td>10423049</td>
<td>0.89</td>
<td>0.713</td>
<td>0.32</td>
<td>0.024</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Prfr</td>
<td>Prolactin receptor</td>
<td>10423030</td>
<td>0.76</td>
<td>0.219</td>
<td>0.38</td>
<td>0.021</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Cd36</td>
<td>Cd36 antigen (thrombospondin receptor)</td>
<td>10528207</td>
<td>0.42</td>
<td>0.022</td>
<td>0.35</td>
<td>0.036</td>
<td>0.48</td>
<td><0.005</td>
<td>0.42</td>
<td>0.050</td>
</tr>
</tbody>
</table>

Gene expression ratios in 4T1.2:67NR and EO771 LMB (LMB):EO771 whole tumour comparisons are shown as determined from Affymetrix Mouse Gene 1.0ST microarrays (three different tumours for each tumour type), and by qRT-PCR (duplicate PCR reactions from each of three different tumours for each tumour type). P-values were calculated by one-way ANOVA using Partek Genomics Suite v6.6 (for microarray data), or by Student’s t-Test (for qRT-PCR data). Graphical representation of the qRT-PCR results is shown in supplementary material Fig. S11. nd, not done. Prfr and its target GlyCAM1 make up a pathway downregulated in EO771 LMB compared with EO771.
showed that MMP-3, known to have broad substrate specificity (Coussens and Werb, 1996), is capable of processing pro-PTHLH into its mature form as well as further cleaving mature PTHLH into smaller bioactive fragments (Frieling et al., 2012). EO771.LMB cells produce higher MMP-9 levels than do EO771, and we have shown previously that 4T1.2 cells have higher levels of MMP-9 than do 67NR (Tester et al., 2000). MMP-3 is also able to process pro-MMP-9 into its enzymatically active form (Ramos-DeSimone et al., 1999). Thus, MMP-3 might promote spontaneous metastasis in 4T1.2 and EO771.LMB tumours in part via proteolytic processing of PTHLH and MMP-9. Indeed, exposure of mammary epithelial cells to MMP-3 results in the induction of epithelial-to-mesenchymal transition (Lochter et al., 1997a; Lochter et al., 1997b; Radisky et al., 2005; Sternlicht et al., 1999), invasion (Lochter et al., 1997a; Lochter et al., 1997b; Sternlicht et al., 1999), genomic instability (Radisky et al., 2005) and transformation (Lochter et al., 1997a; Sternlicht et al., 1999).

In summary, the EO771-derived isogenic model of spontaneous breast cancer metastasis described here and the 4T1 model described primarily in previous publications (Eckhardt et al., 2005; Lelekakis et al., 1999) have enabled the identification of genes and molecular pathways that might regulate metastasis in two different strains of mice. These tumour models display features of both luminal and basal-like cancers, demonstrating their phenotypic diversity as is seen also in human breast cancer. Because no single model accurately depicts human breast cancer, a diversity of syngeneic preclinical models is required for a more comprehensive analysis of metastasis-regulating genes and for testing new therapies that target metastatic disease. We have provided a characterisation of the EO771 metastasis model in C57BL/6 mice that can be used in addition to other models to improve our ability to understand metastasis and develop therapies for individuals with advanced breast cancer.

MATERIALS AND METHODS

Cell lines and cell culture

The EO771 cell line was derived from a spontaneous mammary tumour in a C57BL/6 mouse (Casey et al., 1951) and was stored in liquid nitrogen vapour phase. Early-passage parental EO771 cells were transduced with the pMSCV (murine stem cell virus) retroviral vector expressing the mCherry fluorescent protein (Denoyer et al., 2011). The lungs from a mouse orthotopically implanted with EO771_mCherry cells in our laboratory were excised and sorted by flow cytometry for mCherry-positive cells that were expanded in culture. This sequence of orthotopic growth in vivo followed
by recovery of mCherry-positive cells from the lung was repeated. Upon the second round of mammary fat-pad injections of these mCherry-positive cells, visible lung nodules were detected. One of these nodules was designated Lung Metastasis nodule B and, after being returned to culture, became the EO771.LMB cell line. 67NR and 4T1 cell lines were derived from a subpopulation of a single mammary tumour that arose in a BALB/c/C3H mouse (Aslakson and Miller, 1992), with the 4T1.2 cell line being derived from a single-cell clone of the 4T1 population (Lelekakis et al., 1999). EMT6.5 (Ellis et al., 2000) is a single-cell clone derived from the EMT6 mammary tumour (Rockwell and Kallman, 1973). NMuMG immortal murine mammary epithelial cells were obtained from ATCC. The Ptk6-su mutant murine mammary tumour line MH248 was a kind gift from Dr Wayne Phillips (Tikoo et al., 2012). The murine mammary tumour line AT3, derived from polyoma-middle T antigen transgenic mice (Stewart and Abrams, 2007), was a kind gift from Dr Trina Stewart (Griffith University, Queensland, Australia). 67NR and 4T1.2 mammary adenocarcinoma cells were maintained in Eagle’s minimum essential medium (alpha modification) supplemented with 5% (v/v) fetal bovine serum (FBS) (SAFC Biosciences, Brooklyn, Victoria, Australia) and 1% (v/v) penicillin-streptomycin, whereas E0771, E0771.LMB, EMT6.5, AT3, MH248 and NMuMG cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM) containing HEPES (20 mM) supplemented with 10% (v/v) FBS, penicillin (100 IU/ml) and streptomycin (100 μg/ml). All cells were cultured at 37°C in 5% CO2 (v/v) in air and were maintained in culture for a maximum of 4-5 weeks.

Adhesion assay
Short-term adhesion assays (30 minutes) were completed using thecalcine-AM (Life Technologies, Mulgrave, Victoria, Australia) labelling method as described previously (Chia et al., 2007). The experiment was repeated three times with results showing the mean of triplicate wells ± standard deviation (s.d.) of a representative experiment.

Proliferation assay
Proliferation assays were completed using the sulforhodamine B (SRB) colorimetric assay as described previously (Vichai and Kirtikara, 2006). Cells were seeded into 96-well plates at an initial density of 1×103 cells/well. Proliferation was also assessed in the presence of 500 nM 4-hydroxytamoxifen (4-HT) dissolved in ethanol and diluted to a final ethanol concentration of 1% (v/v).

Migration and invasion assays
Migration and invasion assays were run in triplicate porous (8-μm pore size) Transwell migration chambers (BD Biosciences, Bedford, MA, USA) as described previously (Chia et al., 2007; Kusuma et al., 2012; Sloan et al., 2006). Transwells were coated with EC Mat proteins overnight at 4°C (Chia et al., 2007). Recombinant human laminin-511 (alpahbeta1gamma1) was isolated as previously described (Doi et al., 2002), and vitronectin was obtained from Sigma. For migration assays, cells (2×105/200 μl) in serum-free medium (SFM) were seeded into the top chamber of the Transwell. For invasion assays, a cell suspension of 1×106 cells in 50 μl of SFM was mixed with 50 μl Matrigel (BD Biosciences). 80 μl of the mixture was placed in the Transwell and allowed to set for 30 minutes, followed by addition of 100 μl of SFM. Cells were allowed to migrate for 4-5 hours or invade for 18 hours. The data represent the mean number of migrated or invaded cells ± s.d. of a representative experiment (n=3).

Gelatin zymography
Gelatinase assays were completed as described previously (Kusuma et al., 2011), with minor modifications. Briefly, the cells (5×104/400 μl SFM) were incubated for 24 hours at 37°C and secreted proteins in the supernatants separated by SDS-PAGE on 8% polyacrylamide gels supplemented with 1% bovine gelatin. Proteolytic digestion occurred over the next 24 hours. Gels were scanned and clear MMP-2 and MMP-9 signals quantitated by densitometry using ImageJ software (NIH).

UV irradiation and western blotting
Cultured cells were exposed to 7 J/m2 ultraviolet C (UV) or mock-exposed and whole-cell lysates prepared 4 hours later. Lysates were separated by SDS-PAGE, transferred to a nitrocellulose membrane, and incubated overnight with anti-p53 antibody (1:500, CM5p, Novoceastra, Leica Microsystems, North Ryde, NSW, Australia). Blots were stripped and re-probed with a mouse monoclonal anti-α-tubulin antibody (1:10,000, T5168, Sigma). Bands were visualised using a horseradish peroxidase (HRP)-conjugated secondary antibody and an enhanced chemiluminescence-based detection system.

Quantitative real-time RT-PCR
A representative sample of primary tumour was lysed in Trizol reagent using a FastPrep automated bench-top homogeniser (MP Biomedical, Seven Hills, NSW, Australia), and total RNA isolated in accordance with the manufacturer’s instructions (Life Technologies). Total RNA was subsequently re-purified using RNeasy mini-columns with on-column DNasel digestion (Qiagen, Doncaster, Victoria, Australia). For cell lines, total RNA was isolated using RNeasy mini-kits with on-column DNasel digestion (Qiagen). RNA quality was determined using an RNA6000 Nano chip and 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). cDNA was synthesised using SuperscriptIII reverse transcriptase (Life Technologies). qPCR was completed using either inventoried TaqMan gene expression assays (ERα, ERβ, PR, Erb-b2, CD36, MMP-3, Glycam1) in a 15 μl reaction volume (Life Technologies) or using SYBR-green reagent (Life Technologies) in a 15 μl reaction volume in conjunction with the primers listed in supplementary material Table S4, as previously described (Johnstone et al., 2004). Rps27a was used as an internal reference gene for all reactions. PCR reactions were run for 45 cycles in 96-well plates using a StepOne-Plus real-time PCR platform (Life Technologies).

Primary tumour cell sorting by flow cytometry
The mCherry-expressing 67NR, 4T1.2, E0771 and E0771.LMB primary tumours were disaggregated by collagenase I digestion (Worthington Biochemical Corporation, Lakewood, NJ, USA) and filtered through a series of sieves prior to sorting for mCherry-positive cells using a FACSDiva cell sorter (BD Biosciences). SYTOX green (Invitrogen) was used to exclude non-viable cells.

Immunohistochemistry
Tissue sections (6 μm) were stained using a standard protocol. Briefly, slides were heated for antigen retrieval by pressure cooker treatment in 0.01 M sodium citrate buffer, pH 6.0 (125°C for 3 minutes, 90°C for 10 seconds). Sections were blocked in 3% (v/v) normal goat serum in 0.05% (v/v) PBS-Tween 20 for 1 hour at room temperature. Primary antibody incubation was conducted in blocking buffer overnight at 4°C. Non-specific rabbit IgG (Dako, Campbellfield, Victoria, Australia) or mouse IgG (Dako) antibodies were used as isotype controls. Biotin-conjugated goat anti-rabbit or anti-mouse secondary antibodies (Dako) were used at 1:250 or 1:300 dilution for 1 hour at room temperature. Specific primary-secondary antibody complexes were detected using ABC reagent (Vector Laboratories, Burlingame, CA, USA) and visualised using a 3, 3′-diaminobenzidine peroxidase substrate kit (Vector Laboratories). Sections were counterstained with haematoxylin, dehydrated and mounted. The primary antibodies and dilutions used were as follows: mouse monoclonal anti-human ERα (1:100, clone 1D5, Dako), chicken polyclonal anti-human ERβ (1:500, a kind gift from Dr Jan-Åke Gustafsson, University of Houston, TX, USA), rabbit polyclonal anti-human PR (1:4500, sc-538, Santa Cruz Biotechnology, Dallas, TX, USA), rabbit polyclonal anti-human HER2 (1:400, A0485, Dako), mouse monoclonal anti-human cyclokeratin 5/6 (KRT5/6, 1:100, clone D5/16 B4, Merck Millipore, Kilsyth, Victoria, Australia), rabbit polyclonal anti-EGFR (1:50, ab2430, Abcam, Cambridge, UK) and rabbit polyclonal anti-mouse p53 (1:300, CM5p, Novoceastra).

Tumour growth and analysis
Female BALB/c or C57BL/6 mice (obtained from Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia) were maintained in a specific pathogen-free environment and fed ad libitum. All procedures involving mice conformed to National Health and Medical Research Council animal ethics guidelines and were approved by the Animal Experimentation and Ethics Committee (AEVEC) of the Peter
MacCallum Cancer Centre. To generate primary tumours, 1×10^5 cells were implanted into the fourth inguinal mammary gland [in 20 μl of Hank’s balanced salt solution (HBSS)] of 8- to 10-week-old female BALB/c (67NR, 4T1.2 or EMT6.5) or C57BL/6 (EO771 or EO771.LMB) mice. Primary tumour volume was measured three times per week using electronic callipers. The greatest longitudinal diameter (length) and the greatest transverse diameter (width) were measured. Tumour volumes were estimated by the modified ellipsoidal formula: volume=4/3π x width x length x height (Tomayko and Reynolds, 1989). In resection experiments, primary tumours were excised at a size of 400-600 mm³. For experiments involving tamoxifen administration (Xianju Green Leaf Pharmaceutical Factory, Zhejiang, China), mice were administered tamoxifen (10 μg tamoxifen citrate per gram of chow), commencing on the day of tumour cell implantation. Differences in primary tumour growth rates were calculated by determining the area under each curve using the trapezoid rule (Atkinson, 1989), and then comparing the area under the curve values using a two-sample Student’s t-test (Bryant, 1983).

Experimental lung metastasis assay

EO771 or EO771.LMB cells (5\(^\times\)10\(^5\) cells in 200 μl of HBSS) were injected into C57BL/6 mice via the tail vein using a 26 gauge needle. 19 days later the metastatic burden in the lung was analysed by TaqMan qPCR.

Analysis of lung metastatic burden

Dissected lungs were stained with India Ink to visualise metastatic nodules and the number of surface nodules enumerated. Alternatively, metastatic burden in lung was determined by TaqMan qPCR-based detection of the mCherry nucleotide sequence in whole lung genomic DNA as described previously (Denoyer et al., 2011; Eckhardt et al., 2005).

Anchorage independent growth in soft agar

Soft agar assays were conducted in six-well plates as previously described (Mongroo et al., 2004). Colonies were stained with calceinAM dye (Enzo Life Sciences, Farmingdale, NY, USA) and fluorescent images generated (32× magnification) using an Olympus fluorescent dissecting stereomicroscope. The number of colonies >50 μm in size were counted in three fields per well and averaged.

Generation of mammospheres

Mammosphere cultures were conducted using serum-free DMEM:Ham’s F12 medium containing bFGF, EGF and B27 supplement (Life Technologies) was completed on a portion of the total RNA, followed by determining the area under each curve using the trapezoid rule (Atkinson, 1989), and then comparing the area under the curve values using a two-sample Student’s t-test (Bryant, 1983).

Xenograft tumour growth

One million MCF-7 or MDA-MB-231 human breast cancer cells were inoculated into the 4th mammary gland of NOD scid gamma (NSG) mice and allowed to grow for 6 weeks. Mice implanted with MCF-7 cells were supplemented with 1 μM 17β-estradiol in the drinking water ad libitum. Tumours were fixed overnight in 10% neutral buffered formalin prior to processing for immunohistochemistry.

Gene expression profiling

Total RNA was isolated from primary tumours using the procedure described above. In solution DNAseI digestion (TURBO DNase, Ambion, Life Technologies) was completed on a portion of the total RNA, followed by verification of RNA integrity using a RNA6000 Nano chip and 2100 Bioanalyzer (Agilent Technologies). RNA was processed using NuPAGE reagents (Affymetrix, Santa Clara, CA, USA) and applied to GeneChip Mouse Gene 1.0ST Arrays as per the manufacturer’s instructions (Affymetrix). Three different tumours were processed per tumour type (15 tumours in total). A confocal scanner was used to acquire the fluorescence signal after excitation at 570 nm. Background adjustment, quantile normalization and median-polish summarization was completed using the GC Robust Multi-array Average (GCRMA) algorithm. Microarray profiling data were deposited into the Gene Expression Omnibus (G.E.O.) with Accession No. GSE42272 (http://www.ncbi.nlm.nih.gov/geo/).

Bioinformatics

Affymetrix .cel files were obtained and differential gene expression between 4T1.2/67NR and EO771.LMB/EO771 calculated by one-way ANOVA using Partek Genomics Suite v6.6 (Partek Inc., St Louis, MO, USA). Gene set enrichment analysis was completed using the R program (http://www.R-project.org/). Firstly, the mean expression level of each gene was calculated across 15 different tumours (three each from 67NR, 4T1.2, EO771, EO771.LMB and EMT6.5). Then, the number of genes within each signature that were significantly upregulated or significantly downregulated (P<0.05) in 67NR, 4T1.2, EO771 or EO771.LMB tumours was calculated relative to the mean expression level of each gene across all 15 tumours analysed. Gene expression signatures were obtained from the Molecular Signatures Database (http://www.broadinstitute.org/egad/missigdb/index.jsp) or from the following references: basal epithelial (54 genes) (Hupper and Marks, 2007), luminal epithelial (59 genes) (Huper and Marks, 2007), proliferation (97 genes) (Ghazoui et al., 2011), hypoxia-regulated (75 genes) (Downsett et al., 2011), core EMT markers (91 genes) (Taube et al., 2010), interferon-regulated (27 genes) (Einav et al., 2005), breast cancer stem cells (93 genes) (Creighton et al., 2009) and cancer cell invasion (64 genes) (Kim et al., 2010).

Acknowledgements

We thank Wayne Phillips (Peter MacCallum Cancer Centre, East Melbourne, Australia) for the MH248 cell line, Trina Stewart (Griffith University, Gold Coast, Australia) for the AT3 cell line and Jan-Ake Gustafsson (University of Houston, TX, USA) for the anti-ER antibody. We thank Nic Waddell and Sara Song (Institute for Molecular Biosciences, University of Queensland, St Lucia, Australia) for preliminary bioinformatics assistance, and Alan Herschtal (Peter MacCallum Cancer Centre, East Melbourne, Australia) for assistance with biostatistics. We also thank the Molecular Genomics Core Facility, Microscopy & Histology Core Facility, Flow Cytometry Core Facility, Bioinformatics Core Facility, and Experimental Animal Core Facility of the Peter MacCallum Cancer Centre for their assistance.

Competing interests

The authors declare no competing or financial interests.

Author contributions

Funding

This work was supported in part by a Career Fellowship from the National Breast Cancer Foundation (NBCF), Australia (to R.L.A.), and project grants from the National Health & Medical Research Council (#566871 and #1020280 to R.L.A. and C.N.J., and #560131 to N.P.). K.L.B. is supported by a National Breast Cancer Foundation Early Career Fellowship. This work was also supported in part by The Higher Education Authority of Ireland PRTLI Cycle 4, National Biophotonics and Imaging Platform of Ireland (Y.E.S. and J.H.H.).

Supplementary material

References

Disease Models & Mechanisms

