Salmonella enterotoxin (Stn) regulates membrane composition and integrity

Masayuki Nakano¹, Eiki Yamasaki², Akitoyo Ichinose³, Takaaki Shimohata⁴, Akira Takahashi⁵, Junko K. Akada⁵, Kazuyuki Nakamura⁵, Joel Moss⁶, Toshiya Hirayama¹,*, and Hisao Kurazono²

SUMMARY

The mechanism of action of *Salmonella* enterotoxin (Stn) as a virulence factor in disease is controversial. Studies of Stn have indicated both positive and negative effects on *Salmonella* virulence. In this study, we attempted to evaluate Stn function and its effects on *Salmonella* virulence. To investigate Stn function, we first performed in vitro and in vivo analysis using mammalian cells and a murine ileal loop model. In these systems, we did not observe differences in virulence phenotypes between wild-type *Salmonella* and an stn gene-deleted mutant. We next characterized the phenotypes and molecular properties of the mutant strain under various in vitro conditions. The proteomic profiles of the total cell membrane protein fraction differed between wild type and mutant in that there was an absence of a protein in the mutant strain, which was identified as OmpA. By far-western blotting, OmpA was found to interact directly with Stn. To verify this result, the morphology of *Salmonella* was examined by transmission electron microscopy, with OmpA localization being analyzed by immunogold labeling. Compared with wild-type *Salmonella*, the mutant strain had a different pole structure and a thin periplasmic space; OmpA was not seen in the mutant. These results indicate that Stn, via regulation of OmpA membrane localization, functions in the maintenance of membrane composition and integrity.

INTRODUCTION

Salmonella is a food-borne pathogen that is typically acquired through consumption of contaminated food and water. This bacterium causes severe clinical manifestations, including acute gastroenteritis and typhoid fever (Boyle et al., 2007). Many studies have shown that type III secretion systems, which are encoded within pathogenicity island 1 and 2 (SPI-1 and SPI-2, respectively), are important for the virulence of this organism. These secretion systems are involved in invasion of intestinal epithelial cells and *Salmonella* survival in macrophages (Grassl and Finlay, 2008).

It has been proposed that *Salmonella* enterotoxin (Stn) is a putative virulence factor and causative agent of diarrhea (Chopra et al., 1994; Chopra et al., 1999). Interestingly, it has been shown that the *stn* gene is specifically distributed in *Salmonella* spp. irrespective of their serotypes (Dinjus et al., 1997; Makino et al., 1999; Moore et al., 2007; Lee et al., 2009). This second finding indicates that the *stn* gene might be useful for the identification or detection of *Salmonella* and that Stn might be involved in functions unique to *Salmonella*. Chopra et al. cloned the *stn* gene and showed that it had an enterotoxic activity in a murine ileal loop model (Chopra et al., 1999). Therefore, they proposed that Stn is a *Salmonella* virulence factor and is responsible for the enterotoxicity of *Salmonella*. However, research by other groups did not support this conclusion (Lindgren et al., 1996; Watson et al., 1998; Wallis et al., 1999) and did not show an association of Stn with *Salmonella* virulence. These investigations did not detect differences of virulence phenotypes between wild-type and an *stn* gene-deleted (Δ*stn*) mutant. Thus, the role of Stn in *Salmonella* virulence is still debated.

In this study, we examined the relationship between Stn and *Salmonella* virulence using the Δ*stn* mutant strain in vitro and in vivo models. Our studies reveal new insights into Stn function in *Salmonella*, suggesting that Stn is involved in the maintenance of membrane composition and integrity.

RESULTS

Role of Stn for the virulence of Salmonella

To determine whether Stn contributes to *Salmonella* virulence, we examined *Salmonella* virulence in vitro and in vivo using wild-type and Δ*stn* mutant *Salmonella*. We did not observe statistically significant differences in invasion ability or intramacrophage survival between wild-type *Salmonella* and the Δ*stn* mutant (Fig. 1A,B). Because Chopra et al. showed that Stn exhibits enterotoxic activity in a murine ileal loop model (Chopra et al., 1999), we next investigated the activity of the Δ*stn* mutant in that system. The mutant strain still induced fluid accumulation in the ligated murine ileal loop compared with the control loop and behaved in the same manner as a wild-type strain (Fig. 1C).

To investigate the effect of Stn on chemokine transcriptional levels (i.e. RANTES, GM-CSF, MCP-3, CXCL1, CXCL2, CXCL3) in infected HeLa cells, real-time PCR analysis was performed. HeLa
cells showed statistically significant differences, with reduction of RANTES, MCP-3, CXCL2 and CXCL3 expression, but these decreases were under twofold (supplementary material Fig. S1). From these results, we estimate that Stn modulated chemokine production. Taken together, these results indicate that Stn is not associated with the virulence of Salmonella (i.e. invasion in the host cells, survival in macrophages, enterotoxicity), but that Stn does affect chemokine release.

Characterization of the Δstn mutant to estimate the function of Stn

To evaluate Stn function, we characterized the phenotypes of the Δstn mutant, including growth under different culture conditions (e.g. pH, temperature, growth in the presence of acid or H₂O₂), motility on a soft agar and antibiotic resistance. No difference was found between these strains (data not shown).

We next analyzed the Salmonella membrane protein fraction by SDS-PAGE. A protein signal was missing in the Δstn fraction and this missing protein was identified as the outer membrane protein A (OmpA) (Fig. 2A). To determine whether Stn regulates the expression of ompA, we quantified ompA mRNA at mid-log phase by real-time PCR. The transcriptional level of ompA in the Δstn mutant was almost the same as in wild type (Fig. 3). In addition, we also did not observe statistically significant differences in the transcription of another four membrane protein genes (ompC, lpp, lamB and ompW) between wild type and the Δstn mutant (Fig. 3). These results indicate that Stn does not affect expression of membrane protein genes, including ompA, and that OmpA localization or levels in the Δstn mutant might differ compared with that of the wild-type strain.

OmpA is a major outer membrane protein of Gram-negative bacteria, including Salmonella, and is associated with many cellular functions (Chai and Foulds, 1997). We next investigated the membrane of Salmonella strains by electron microscopy. Indeed, we found that the Δstn mutant had a different pole structure from the wild-type strain. The Δstn strain also had a very thin periplasmic space compared with a wild-type strain (Fig. 2B,C). From these results, we concluded that Stn might regulate membrane integrity by its interaction with OmpA. We next analyzed OmpA localization by immunogold staining using anti-OmpA antibody. In wild-type strains, we detected OmpA signals in the membrane region, whereas the Δstn mutant did not show evidence of the protein (Fig. 2D,E). To verify this result, we also constructed the ompA gene-deleted mutant (ΔompA) and carried out the immunogold staining analysis. As expected, we could not find signals in the ΔompA mutant (Fig. 2F). These results indicate that Stn affects OmpA localization in the membrane region.

Stn interacts with OmpA

As shown in Fig. 2, lack of Stn affects membrane integrity and the localization of OmpA in the outer membrane. From these results, we hypothesized that Stn might interact with OmpA directly to control the localization of OmpA in the outer membrane of Salmonella. To test the hypothesis that OmpA interacts with purified recombinant Stn (named TF-Stn), we carried out far-western blotting. Using purified recombinant OmpA and TF-Stn proteins, we found that membrane OmpA interacted with soluble TF-Stn, which was used as a probe (Fig. 4B). By contrast, a control reaction using TF-tag did not generate a specific signal with OmpA (Fig. 4A). Thus, this result suggests that Stn interacts with OmpA directly, and that it might facilitate the proper localization of OmpA in the organism.

DISCUSSION

Although it has been reported that Salmonella produces an agent responsible for enterotoxic activity, little information concerning this factor is available (Finkelstein et al., 1983; Molina and Peterson, 1980). That factor has not been identified thus far. Chopra et al. have shown that Stn from Salmonella typhimurium strain Q1 exhibits enterotoxic and cytotoxic activities (Chopra et al., 1999). Furthermore, they also noted that the deduced amino acid sequence of Stn (amino acid residues 127-142) shows some similarity to the active site of cholera toxin (CT) and heat-labile enterotoxin (LT) ADP-ribosyltransferases (Chopra et al., 1994). Therefore, they proposed that Stn could be a key factor in acute gastroenteritis and diarrhea and could contribute to Salmonella virulence. However, other research groups reported that Stn is not associated with Salmonella virulence, e.g. enterotoxicity, cytotoxic activity
As mentioned above, the functions of Stn are still debated, but it is interesting to note that the stn gene is distributed only in Salmonella species (Dinjus et al., 1997; Makino et al., 1999; Moore and Feist, 2007; Lee et al., 2009). From this point of view, it is possible that Stn might play a role in unique or special functions of Salmonella. We therefore proposed that biological activities of Stn are important to Salmonella virulence, especially acute gastroenteritis.

In this study, we examined the functions of Stn using the Δstn mutant to verify whether Stn is involved in Salmonella virulence. As shown in Fig. 1, we could not find any differences of virulence phenotypes between the wild type and Δstn. In addition, we could not detect the R-S-EXE triad motif, which is essential for the ADP-ribosyltransferase of CT and LT (Harford et al., 1989; Laing et al., 2011), in the deduced amino acid sequence of Stn (Fig. 5). On the basis of these data, we think that Stn is not an ADP-ribosyltransferase and does not function as a virulence factor of Salmonella.

Previous studies concerning Stn function have been focused on its effect in infected host cells (Chopra et al., 1994; Chopra et al., 1999). By contrast, in this study, we investigated unknown functions of Stn in Salmonella. We attempted to estimate the functions of Stn from its deduced amino acid sequence. It is noteworthy that Stn protein has no homology with other proteins (data not shown). We characterized the Δstn mutant and showed that Stn might affect membrane integrity via regulation of OmpA localization. OmpA is generally synthesized in the cytoplasm in a precursor form with a signal sequence and is translocated into the periplasmic space or outer membrane. Previous studies have indicated that the requirements for translocation of OmpA include the signal sequence and correct protein conformation (Freudl et al., 1985; Freudl et al., 1990). It has been speculated that Stn is located in the cytoplasm, because Stn lacks a typical signal sequence and transmembrane region. Thus, we hypothesize that interaction between Stn and OmpA contributes to the conservation of OmpA protein conformation and might facilitate OmpA translocation into the outer membrane. It is noteworthy that Stn is predicted to be a highly basic protein [isoelectric point (pI) is over 11], whereas OmpA in Salmonella is predicted to be a slightly acidic protein (pI 5.6). Consequently, charge difference might contribute to the interaction between Stn and OmpA. Further detailed studies on the interaction between Stn and OmpA are needed to verify the function of this proposed complex.

Our observations give new insight into Stn function in bacterial cells. Stn might participate in the maintenance or membrane integrity of this bacterium. We are currently underway analyzing the detailed molecular mechanisms by which Stn regulates membrane integrity.

METHODS

Bacteria

Salmonella enterica serovar Enteritidis strain 171, a clinical isolate from Thailand, was used as a standard strain in this study. Bacteria were routinely cultured in Luria-Bertani (LB) medium at 37°C.

Fig. 2. Regulation of OmpA localization by Stn. (A) SDS-PAGE of prepared protein fractions. Proteins were loaded on 10% gel in each lane as follows: 10 μg of whole cell protein fraction, 5 μg of secreted protein fraction, 10 μg of periplasmic protein fraction and 5 μg of total membrane protein fraction. Gel was stained with Coomassie Brilliant Blue R-250. M, protein marker; lane 1, wild type; lane 2, Δstn. (B,C) Transmission electron microscopic image of wild-type (B) and Δstn mutant (C) cells in ultrathin sections (magnification: 12,000×). Bacteria were cultured in LB medium at 37°C for 16 hours. (D-G) Immunogold labeling of OmpA using anti-OmpA antibody (magnification: 20,000×). Bacteria were cultured on LB agar plates at 37°C for 16 hours. D, wild-type strain; E, Δstn; F, ΔompA; G, wild type using normal mouse serum for control reaction. Arrows indicate the gold particles.
Construction of deletion mutants

Deletion mutant strains were constructed as described previously (Kodama et al., 2002). In brief, a DNA fragment of the stn gene was generated by PCR using primers stn-1 (5’-GAGATCCGATTTGACGCTTAAATCTCC-3’) and stn-4 (5’-CTCGAGATATCTTGAACCTGGGTA-3’), after the preparation of PCR products using primers stn-1 and stn-2 (5’-ATACGGGTATTCGACGGTTGGAAGGC-3’), and stn-3 (5’-GGCTTTACCTCCATATGCCTAAGAGGC-3’) and stn-4, respectively. A DNA fragment of the ompA gene was amplified by PCR using primers omp-1 (5’-CTGCAAGAGTTTCCAACTACGTGTTGTAAGAGGC-3’) and omp-4 (5’-GCATGCATGCGCACGAAATGACCG-3’), after the preparation of PCR products using primers omp-1 andomp-2 (5’-AACTTGCATCTCTACAGCGGTACAGGTTGTTT-3’) and omp-3 (5’-AACACCTGGTACGCTGTAAGATCGAAGGT-3’). The PCR products generated using primers stn-1 and stn-4, and omp-1 and omp-4, were cloned into the suicide vector pYAK1, and then sequenced. Recombinant plasmid was transfected into Escherichia coli strain SM10λpir. After conjugation and disassembly of plasmids, candidates were confirmed by PCR using primers stn-1 and stn-4 oromp-1 andomp-4, respectively. Resulting mutant strains for the stn and ompA genes were named Δstn and ΔompA, respectively.

Preparation of recombinant proteins

The stn gene was amplified by PCR using primers stn-F (5’-GGATCCGATTTGACGCTTAAATCTCC-3’) and stn-R (5’-GTACGACCCCTGCCTTTTTTTGACA-3’). PCR product was cloned into pCold TF (TaKaRa Bio) and the plasmid construct was transfected into E. coli BL21 (DE3). Recombinant Stn was expressed in LB medium supplemented with 50 μg/ml ampicillin and 2% glucose at 30°C, 1% glucose at 37°C for 20 hours and proteins were precipitated from the supernatant using trichloroacetic acid (final concentration: 5%) and resuspension in 1 M Tris-HCl (pH 8.0). The periplasmic protein fraction and membrane protein fraction were prepared as described previously (Sittka et al., 2007).

Preparation of protein fractions

To perform the secreted protein fraction, bacteria were cultured in LB medium at 37°C for 16 hours with shaking. After washing the bacteria once with PBS and resuspension in 10 mg loading buffer (10% glycerol, 62.5 mM Tris-HCl, pH 8.0, 2% sodium dodecyl sulfate, 0.01 mg/ml bromophenol blue, 5% β-mercaptoethanol), bacterial cells were disrupted by sonication for 10 minutes and insoluble proteins were removed by centrifugation at 20,000 × g, 4°C for 10 minutes. To prepare the secreted protein fraction, bacteria were cultured in LB medium at 37°C for 20 hours and proteins were precipitated from the supernatant using trichloroacetic acid (final concentration: 5%) at 4°C for 16 hours followed by centrifugation for 1 hour at 20,000 × g, 4°C. Pellet was washed twice with ice-cold acetone and neutralized 1 M Tris-HCl (pH 8.0). The periplasmic protein fraction and membrane protein fraction were prepared as previously described (Sittka et al., 2007).

The concentration of each protein fraction was calculated using a Pierce 660 nm Protein Assay Kit with Ionic Detergent Compatibility Reagent (Thermo Scientific).
incubation continued at 37°C for 10 minutes. After incubation, cells were washed with PBS and incubated at 37°C, 5% CO₂ until 2 hours post infection with 100 μg/ml gentamicin. At 2 hours post infection, medium was replaced with fresh culture medium containing 10 μg/ml gentamicin, and incubation continued until 8 or 24 hours post infection. Infected cells were washed with PBS and lysed with PBS containing 0.1% Triton X-100. Viable bacteria were counted on LB agar plates.

Electron microscopy and immunostaining of OmpA

Salmonella morphology was examined by transmission electron microscopy. Bacteria were cultured in LB medium at 37°C for 16 hours and collected by centrifugation (300 g, 10 minutes). Bacteria were fixed in 2% glutaraldehyde buffer (pH 7.4) containing 0.02 M sodium cacodylate, 0.6% NaCl and 0.02% ruthenium red. After fixation in 1.5% osmium tetroxide containing 0.02 M sodium cacodylate and 0.6% NaCl, bacterial cells were dehydrated in ethanol and were saturated with Quetol 653. The sections were prepared by Ultra microtome (Leica Microsystems) and stained with uranyl acetate and citrate.

Immunogold labeling was performed as previously described (Ichinose et al., 2011). In brief, bacteria were cultured on an LB agar plate at 37°C for 16 hours and fixed using 0.2% glutaraldehyde at −80°C. After dehydration, samples were saturated with LR-GOLD resin (Nissin EM) and segments were treated with murine anti-OmpA antibody. Signals were detected using a colloidal gold particle conjugated to anti-mouse IgG (10 nm diameter of conjugated gold; BB International).

All specimens for transmission electron microscopy were examined with a JEM-1230 electron microscope (JEOL).

Assay for Salmonella enterotoxicity

Salmonella enterotoxicity assays were performed as described previously, with some modifications (Chopra et al., 1999; Kajikawa et al., 2010). In brief, bacteria were cultured in LB medium at 37°C for 16 hours and washed once with PBS. Prepared bacteria [ca. 1×10⁹ colony forming units (CFU)/loop] were injected into ligated murine ileal loops (C57BL/6 mouse, female, 7-weeks old). At 4 hours after injection, the fluid content of each loop was measured. Activity was expressed as the ratio of the fluid content of the loop (in ml) to its length (in cm).

RNA isolation and quantitative real-time PCR

Total RNA was extracted from infected HeLa cells using TRIzol reagent (Invitrogen) and contaminating genomic DNA was removed by DNase I (TaKaRa Bio). cDNA was generated from 1 μg of total RNA using the PrimeScript RT reagent kit and Oligo dT primer (TaKaRa Bio) in accordance with the manufacturer’s instructions. The primer sequences for chemokine genes used in this study were described previously (Okuda et al., 2005; Abdallah et al., 2007; Huang et al., 2007; Okuda et al., 2009; Nishihara et al., 2010). The expression levels of each gene were normalized, with GAPDH as an internal control.

Bacteria were cultured in LB medium at 37°C until mid-log phase (OD₆₀₀=0.8) and total RNA was extracted using TRIzol reagent. cDNA was generated from 1 μg of total RNA using the PrimeScript RT reagent kit and random hexamers (TaKaRa Bio). The primer sequences for membrane protein genes were as follows: ompA (5'-
FUNDING

This work was supported by the Global Center of Excellence Program on Integrated Global Control Strategy for the Tropical and Emerging Infectious Diseases from the Ministry of Grant of Culture, Sports, Science and Technology of Japan; and by the Cooperative Research Grant of NEKKEN, 2011 (to H.K.).

AUTHOR CONTRIBUTIONS

The authors declare that they do not have any competing or financial interests.

ACKNOWLEDGEMENTS

We thank Asami Fujii and Kayo Maeda for their technical assistance.

COMPETING INTERESTS

The authors declare that they do not have any competing or financial interests.

REFERENCES

