Diversification of innate immune genes: lessons from the purple sea urchin

L. Courtney Smith

Pathogen diversification can alter infection virulence, which in turn drives the evolution of host immune diversification, resulting in countermeasures for survival in this arms race. Somatic recombination of the immunoglobulin gene family members is a very effective mechanism to diversify antibodies and T-cell receptors that function in the adaptive immune system. Although mechanisms to diversify innate immune genes are not clearly understood, a seemingly unlikely source for insight into innate immune diversification may be derived from the purple sea urchin, which has recently had its genome sequenced and annotated. Although there are many differences, some characteristics of the sea urchin make for a useful tool to understand the human immune system. The sea urchin is phylogenetically related to humans although, as a group, sea urchins are evolutionarily much older than mammals. Humans require both adaptive and innate immune responses to survive immune challenges, whereas sea urchins only require innate immune functions. Genes that function in immunity tend to be members of families, and the sea urchin has several innate immune gene families. One of these is the Sp185/333 gene family with about 50 clustered members that encode a diverse array of putative immune response proteins. Understanding gene diversification in the Sp185/333 family in the sea urchin may illuminate new mechanisms of diversification that could apply to gene families that function in innate immunity in humans, such as the killer immunoglobulin-like receptor genes.

The arms race and immune diversification
Host-pathogen interactions constitute a constant, long-term evolutionary arms race. This arms race is described as a competition between high rates of mutation and/or variation in microbes with short generation times versus long-lived hosts with corresponding low mutation rates (Haldane, 1949). This conflict is based on the relatively frequent appearance of new pathogen variants that may be more virulent, and thereby more successful and so could become established in the population. On the other side of the arms race, the host immune system must respond to pathogen variation within time scales that may be significantly shorter than host generation times. To survive, hosts employ a variety of mechanisms to diversify their immune response. Higher vertebrates use somatic recombination to generate large numbers of slightly variant immunoglobulin (Ig) family proteins that interact with pathogen peptides (Neuberger, 2008). The alternative adaptive immune response that has recently been characterized in lampreys and hagfish has a unique mechanism that assembles variable lymphocyte receptor (VLR) genes from cassettes of gene segments encoding leucine-rich repeats (LRRs) (Nagawa et al., 2007; Rogozin et al., 2007). The VLR genes are expressed by two types of lamprey lymphocytes that resemble B and T cells (Guo et al., 2009). The level of diversity of the VLR genes generated by gene assembly has been estimated to be at least as great as that for the Ig family resulting from somatic recombination.

The KIR genes – at the intersection of adaptive and innate immunity
The major histocompatibility complex (MHC) gene family in higher vertebrates is composed of a number of closely clustered genes, each with multiple alleles. The diversity that is generated by multiple alleles at multiple loci is central to pathogen recognition and to the generation of specific immune responses. The regions of the MHC genes that have the highest levels of polymorphism are those that encode the peptide-binding groove and that are under selection for successful presentation of pathogen peptides to T-cell receptors (for reviews, see Vogel et al., 1999; Woelfing et al., 2009). The killer immunoglobulin-like receptors (KIR) are encoded by a highly diverse gene cluster, and function at the intersection of adaptive and innate immunity in vertebrates (Martinsohn et al., 1999; Biassoni, 2009). KIR proteins are expressed on natural killer (NK) cells and interact with MHC class I molecules encoded by a variety of the class I genes and alleles. Two types of KIR proteins are displayed on human NK cells: inhibitory KIR proteins that block the cytotoxic activity of NK cells, and activating KIR proteins that promote NK cell killing through association with adaptor signaling proteins. Inhibitory KIR proteins survey the level of MHC expression on self cells, which is a self-monitoring system where high levels indicate that the cell is normal and that cytotoxic activity of the NK cells is inhibited. Alternatively, virally infected cells have reduced levels of MHC expression to which NK cells respond cytotoxicity. NK cells deploy an array of inhibitory and activating KIR proteins to regulate cytotoxic responses to self, altered self (virus infection) and pathogens (Biassoni, 2009).

Diversity of the MHC genes is driven by pathogen pressure, and the diversity of the KIR genes is driven by the MHC diversity (Marinez-Borra and Khakoo, 2008). In humans, 15 to 17 KIR genes cluster in a head-to-tail orientation about 2 kb apart

1Department of Biological Sciences, George Washington University, 340 Lisner Hall, 2023 G Street NW, Washington, DC 20052, USA
e-mail: csmith@gwu.edu
from each other. They are positioned in two clusters separated by a region of 14 kb with many repeat elements (Wilson et al., 2000) that may function either as an ‘anchor’ to stabilize proper alignment of the two clusters during meiosis, or it may promote recombination between the two clusters (Uhrberg, 2005). Within the clusters, different haplotypes can be composed of different numbers and types of KIR genes. This diversity is generated by intra- and intergenic recombination, gene conversion, domain shuffling, gene duplication/deletion, and single nucleotide polymorphisms (SNPs) that alter the coding sequence (Martin et al., 2004), but the detailed molecular mechanisms that promote (or block) the DNA variations are not known, only the results of the genomic instability are typically observed.

Innate immunity

Diversification of the vertebrate innate immune system is likely to occur at least for some gene families, and an understanding of the underlying mechanisms is emerging from studies of innate immunity in non-vertebrates. Invertebrates constitute most of the animals on the planet and they lack an immune system similar to that of vertebrates. Invertebrates such as Drosophila and C. elegans that are employed in studies of development and immunology, the purple sea urchin is very large with an adult size of ~2.5 inches or more in diameter (Fig. 1). Sea urchins have radial symmetry, generally have spherical bodies, and are covered with spines of variable numbers, shapes and lengths. The purple sea urchin and its sister species, the red sea urchin, have life spans similar to humans, ranging from 50 to 100 years (Ebert, 1967). Sea urchins are members of the Echinoderm phylum that is grouped within the deuterostome assemblage of animals that also includes the Chordate phylum, in which humans are classified (Fig. 2). Consequently, humans are much more closely related to sea urchins than they are to fruit flies and round worms. Several sea urchin species have been used extensively for investigations of early development, which have direct applications to understanding the regulation of development in humans. Sea urchins also have the potential to provide relevant information about innate immune function in humans compared with studies from animals that are members of more distant phyla, such as arthropods (flies). The importance of purple sea urchins in biomedical research has been underscored with the sequencing and assembly of the genome (Sodergren et al., 2006) [for detailed genome annotation analysis, see Developmental Biology (2006) 300 (1)], which has revealed an innate immune system that is both complex and sophisticated.

Diversity of the immune response; the Sp185/333 cDNA sequences and the encoded proteins

Many immune genes are members of large families that are composed of closely linked, duplicated genes with a similar sequence. Gene families may be a basic requirement for (and/or a result of) the diversification of non-rearranging genes that is selected for in response to pathogen pressure. In the genome of the purple sea urchin, a number of large gene families with putative or known immune function have been identified (Hibino et al., 2006; Rast et al., 2006; Sodergren et al., 2006). Early investigations of the immune functions of bacterially activated immune cells from the purple sea urchin identified a set of expressed sequence tags (EST), of which about 70% matched to two sequences, DD185 (Rast et al., 2000) and EST333 (Smith et al., 1996). These transcripts, originally called 185/333 (Nair et al., 2005) and now called Sp185/333 to differentiate between the different species of sea urchins that express these genes (Ghosh et al., 2010), are readily induced in the immune cells of the sea urchin in response to immune challenge from bacteria and pathogen-associated molecular patterns, such as lipopolysaccharide from Gram-negative bacteria. β-1,3-glucan which is typical of fungi, and double-stranded RNA which is a signature of viruses (Rast et al., 2000; Nair et al., 2005; Terwilliger et al., 2007). Based on the gene expression patterns and sequence diversity, the Sp185/333 transcripts are considered to be an important component of the sea urchin immune system.
response, providing the host with a diverse array of innate immune proteins.

Message diversity

The surprising level of sequence diversity of the Sp185/333 cDNAs became evident when optimal alignments required the insertion of large artificial gaps. These artificial gaps defined blocks of sequence called *elements* that were variably present or absent within individual cDNAs, resulting in repeatedly identifiable *element patterns* in individual messages (Fig. 3) (Nair et al., 2005; Terwilliger et al., 2006). Element patterns are mosaic compositions of six to 22 elements, of a possible 27, such that most of the diversity within the Sp185/333 transcripts is imparted by the element pattern (Buckley and Smith, 2007). Additional diversity results from numerous SNPs and small insertions/deletions (indels) that are present throughout the sequences. The Sp185/333 transcripts are an example of an extreme level of sequence diversity, and are expressed by the immune cells of the purple sea urchin upon immune challenge.

Unexpectedly, half of the Sp185/333 cDNAs have SNPs and small indels (one to a few nucleotides) that encode truncated proteins, some with a missense sequence (Terwilliger et al., 2007). This was particularly surprising because all but one of the sequenced genes (a total of 171) have perfect open reading frames encoding full-length proteins (Buckley et al., 2008a). When cDNAs and genes with matching element patterns are compared, nucleotide differences range from 5.8-16.7%. Furthermore, very few of the messages match exactly to the genes from an individual sea urchin. The SNPs in the messages and the corresponding positions in the genes from which they are most likely transcribed, indicate that the most common change from gene to message is cytidine to uridine. This is consistent with message editing by cytidine deaminase (Chester et al., 2000), which is a member of a protein family that includes one protein involved with affinity maturation of antibodies by editing the Ig gene sequences in B cells (Liu and Schatz, 2009). The range of sequence variations between genes and messages also suggests that a low-fidelity polymerase, such as polymerase μ (Ruiz et al., 2001), may transcribe the Sp185/333 gene family. Several gene models for cytidine deaminases and one for polymerase μ are present in the sea urchin genome (Hibino et al., 2006). Consequently, message editing and/or low-level transcription fidelity may be employed by sea urchins to increase the diversity of the Sp185/333 messages and to expand the repertoire of the encoded Sp185/333 proteins responding to microbial challenge.

Protein diversity

The Sp185/333 proteins are present in or on subsets of immune cells (Fig. 4) (Brockton et al., 2008), and may associate with the cell surface through interactions between the arginine-glycine-aspartic acid (RGD) motif on the Sp185/333 proteins and integrins, which are integral membrane proteins with cell surface expression on coelomocytes. Integrin gene models are present in the sea urchin genome (Sodergren et al., 2006; Whittaker et al., 2006), and some integrins are expressed by the immune cells (Smith et al., 2006). The diversity of the Sp185/333 protein repertoire in coelomocytes results in patterns of bands or spots on one- and two-dimensional western blots that are not shared among individual sea urchins (Brockton et al., 2008; Dheilly et al., 2009). The number of Sp185/333-positive spots on two-dimensional western blots suggests that individual sea urchins may produce significantly more protein variants, which includes truncated and missense forms, than the estimated number of genes (Dheilly et al., 2009). The combination of Sp185/333 gene diversification (Buckley et al., 2008b) plus message editing (Buckley et al., 2008a) results in an extraordinarily diverse set of expressed proteins.

Sp185/333 gene diversity

The Sp185/333 gene family is composed of about 50 members that are highly polymorphic among individual sea urchins (Terwilliger et al., 2006; Buckley et al., 2008b).
Disease Models & Mechanisms

Fig. 4. Sp185/333-positive coelomocytes. The phagocyte class of coelomocytes (immune cells) include polygonal (P) cells, discoidal (D) cells, and small (S) phagocytes. A subset of the small phagocytes are Sp185/333-positive. Some of the polygonal cells have Sp185/333-positive perinuclear vesicles. The discoidal phagocytes are negative for Sp185/333. The Sp185/333 proteins are recognized by anti-185/333 antibodies and detected with a secondary antibody labeled with a red fluorochrome. Actin is recognized with an anti-actin antibody and detected with a secondary antibody labeled with a green fluorochrome. The nuclear DNA is detected by DAPI staining, which is blue (for details on immunofluorescent staining, see Brockton et al., 2008).

The genes are ≤2 kb with two exons, of which the second exon encodes the protein (except for the leader) including all of the elements (Buckley and Smith, 2007). The variable composition of the element patterns appear as a mosaic of sequences in the second exon and impart the greatest sequence diversity to the genes. An average of 71% of all genes sequenced from three animals are unique, and none of the genes are shared among all three animals employed in the analysis (Buckley et al., 2008a). However, when individual element sequences are compared between the same three sea urchins, 28% are found to be shared among two or more animals (i.e. element sequences are shared but full-length gene sequences are not). This illustrates the diversity and complexity of these short genes and infers the high level of polymorphism within the gene family and within the population of sea urchins as a whole. Only a single pseudogene with a deletion and frameshift mutation has been identified from 171 genes. Genes lacking introns are present and may be the result of retrotransposition, but it is not known whether they are expressed (Buckley and Smith, 2007).

The 5’-end of the genes encode type 1 repeats (red blocks in Fig. 3, see figure legend) that are present in two to four copies and show evidence of single and multiple repeat duplications, deletions and recombination events (Buckley et al., 2008b). There is no correlation between the element patterns at the 5’-end of the second exon with the patterns at the 3’-end, indicating a rapid rate of recombination within the exon. In fact, there is evidence that recombination may occur at any point along the sequence of a gene with no particular hotspot (Buckley et al., 2008b).

Analysis of the elements within the Sp185/333 genes also illustrates diversity that is based on variations in element patterns. Within the 171 genes that have been analyzed, a given specific sequence version of an element may be adjacent to as many as 12 different variants of neighboring elements, in addition to being adjacent to different types of neighboring elements. In the face of extensive and extraordinarily rapid recombination, there may also be mechanisms to block the formation of pseudogenes because gene fragments or isolated elements, and the homogenization of gene sequences have not been found. Furthermore, there may also be mechanisms to block homogenization of gene sequences.

The spatial relationships between six clustered Sp185/333 genes in a bacterial artificial chromosome (BAC) clone shows that many of the linked genes are positioned as close together as 3.2 kb (C. Miller, K. Buckley, R. Easley and L.C.S., unpublished; L.C.M., unpublished). The outer flanking genes are oriented in the same direction and are opposite to those within the cluster (Fig. 5A). A screen of sea urchin BAC libraries shows that Sp185/333-positive clones have at least two genes clustered tightly enough to allow PCR amplification of intergenic regions. Each gene on the BAC is flanked by GA microsatellites, and GAT microsatellites are present surrounding segmental duplications that include a gene (Fig. 5A) (Buckley and Smith, 2007) (C. Miller, K. Buckley, R. Easley and L.C.S., unpublished). Significant genome instability in the region where the Sp185/333 genes are located is probably because of the high level of sequence similarity among the genes, which is ≥88% (Buckley and Smith, 2007), the repeats within the genes, and the presence of microsatellites that surround the genes. This would promote sequence diversification from gene duplication, deletion, segmental duplication, gene recombination and gene conversion, in addition to the possibility of significant variations in Sp185/333 gene copy number in different individuals resulting from unequal crossovers and meiotic mispairing.

Conclusions

There is a preponderance of gene families that function in immunity with members that are clustered and that share sequences. Examples include the Toll-like receptors, nucleotide-binding and oligomerization domain (NOD)-like receptors, the KIR genes and the Sp185/333 genes, in addition

Fig. 5. Microsatellites surround the Sp185/333 genes and minisatellites fill the first intron of the KIR genes. (A) Four Sp185/333 genes (~1.8-2.0 kb each) are shown as assembled in the S. purpuratus genome (ver 2.0), and the two exons for each gene are shown as boxes. Gene names correspond to the element patterns in the second exon (see Fig. 3). Two types of microsatellites, GA repeats (circles) and GAT repeats (triangles) are associated with the Sp185/333 genes. The region shown is about 28 kb and is not to scale. Figure modified with permission from BioMed Central Ltd (Buckley and Smith, 2007). (B) Two linked KIR genes are shown with seven or eight exons (vertical bars). The first intron of the KIR genes is composed entirely of a minisatellite (diagonal striped boxes). The scale is shown below the KIR genes. The dotted line below the genes indicates the direction of transcription. Figure modified with permission from the National Academy of Sciences, U.S.A. (Wilson et al., 2000).
Innate immune diversity in the purple sea urchin as a system to direct investigations of gene and protein diversification in higher vertebrates

- The purple sea urchin has a sophisticated innate immune system that functions in the absence of adaptive immune capabilities, yet responds to pathogens with a host of diverse proteins to fight infection.

- The purple sea urchin is an echinoderm, a sister group to the chordates that includes humans. Sea urchins are therefore evolutionarily related more closely to humans than other organisms that are used to evaluate immune function, such as fruit flies and round worms.

- A family of immune genes in the purple sea urchin, Sp185/333, produces a highly diverse array of proteins in response to pathogens. The mechanisms that appear to generate this diversity may provide insight into how diversity is achieved for some innate immune gene families in humans.

COMPETING INTERESTS

The author declares no competing financial interests.

REFERENCES

Haldane, J. B. S. (1949). Disease and evolution. La Ricerca Scientifica 19, 68-75.

ACKNOWLEDGEMENTS

The author is grateful to Dr Katherine Buckley and Dr Virginia Brockton for supplying figures for this review. The research on sea urchin immunity is supported by funding from the National Science Foundation (MCB-0077970, MCB-0424235, MCB-0744999) to L.C.S.
Innate immune gene diversity

