














E17.5 embryos. The majority of wild-type (8/9; 89%), Hectd1+/+;
Raldh2+/– (7/10; 70%) and Hectd1opm/+;Raldh2+/+ (5/7; 71%)
embryos displayed normal aortic arch architecture (Fig. 5E-G), with
a statistically insignificant fraction exhibiting a shortened transverse
arch between the brachiocephalic and left common carotid arteries
(P>0.05; Chi2 test). This shortened transverse arch phenotype is less
severe than the common origin of the brachiocephalic and left
common carotid arteries observed in Hectd1opm/opm mutants
(Fig. 1). Interestingly, the percentage of embryos with this benign
aortic arch variant mirrors the percentage of embryos with
hypoplastic 4th PAAs at E10.5. In contrast, over half of the
double heterozygous (Hectd1opm/+;Raldh2+/–) embryos examined
presented with this anatomical variation (4/7; 57%; P<0.05;

Fig. 5H). This also reflects the proportion of double heterozygous
embryos that presented with hypoplastic left 4th PAAs at E10.5.

DISCUSSION
We demonstrate that Hectd1 is required for normal aortic arch
development through a previously undescribed interaction with
retinoic acid signaling. Aortic arch abnormalities observed in
Hectd1opm/opm mutants are similar to those described in mutant
mouse models with reduced retinoic acid signaling, and include
interrupted aortic arch, right-sided aortic arch as well as
abnormalities of the subclavian and carotid arteries (El Robrini
et al., 2016; Ghyselinck et al., 1997; Jiang et al., 2002; Kastner et al.,
1994; Lee et al., 1997; Mendelsohn et al., 1994a; Niederreither

Table 3. 4th PAA phenotypes in E10.5 Hectd1 opm/+;Raldh2 � /+ embryos

Genotype n Abnormal (%) Left/right hypoplastic Left hypoplastic Right hypoplastic P-value Chi2

Hectd1+/+;Raldh2+/+ 16 3 (19) 0 1 2
Hectd1+/+;Raldh2+/– 11 3 (27) 0 1 2 0.6007 0.2739
Hectd1opm/+;Raldh2+/+ 12 5 (42) 1 3 1 0.1841 1.765
Hectd1opm/+;Raldh2+/– 16 11 (69) 7 1 3 0.0044 8.127

n=number of embryos analyzed. Abnormal indicates the number of embryos displaying the indicated abnormality with the percentage of total in parentheses.
Each 4th PAA phenotypewas scored as observed on the left, right or both the left and right sides.P-values were calculated by Chi2 test with Bonferroni correction,
comparing the total number of normal and abnormal embryos with wild type (Hectd1+/+;Raldh2+/+).

Fig. 5. Reduced Raldh2 gene dosage results in
PAA and aortic arch abnormalities in
heterozygous Hectd1 opm/+ mutant embryos.
(A-H) Intracardiac ink injections of E10.5 (32- to 36-
somite; A-D) and E17.5 (E-H) embryos to visualize the
PAAs and aortic arch organization. (A-D) Right-sided
views of E10.5 wild-type (Hectd1+/+;Raldh2+/+; A),
Hectd1+/+;Raldh2+/� (B), Hectd1+/opm;Raldh2+/+ (C)
and Hectd1+/+;Raldh2+/+ (D) embryos, showing the
3rd, 4th and 6th PAAs, with examples of hypoplastic
4th PAAs (arrows). Few wild-type (n=3/16, 19%),
Hectd1+/+;Raldh2+/– (n=3/11, 27%) and Hectd1opm/+;
Raldh2+/+ (5/12, 42%) embryos showed hypoplastic
4th PAAs (Table 3). On the other hand, the 4th PAA
was hypoplastic in two-thirds of double heterozygous
Hectd1opm/+;Raldh2+/– embryos (n=11/16, 69%,
P<0.0001, compared with wild type by Chi2 test).
(E-H) At E17.5, 70% (7/10) of Raldh2 heterozygotes
(F) and 71% (5/7) Hectd1 heterozygotes demonstrate
similar length of the transverse arch between the
brachiocephalic and left common carotid arteries
(brackets) compared with wild type (E). This segment
is shortened in Hectd1opm/+;Raldh2+/– double
heterozygotes (H, asterisk), resulting in a shortened
transverse arch between the brachiocephalic and left
common carotid arteries in over half of embryos
examined (4/7, 57%; P<0.05, Chi2 test). Scale bars:
50 µm (D) and 250 µm (H). AA, ascending aorta; DA,
ductus arteriosus; DAo, descending aorta; LCC, left
common carotid; LSA, left subclavian artery; PT,
pulmonary trunk; RCC, right common carotid; RSA,
right subclavian artery.
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et al., 2001; Pan and Baker, 2007; Stefanovic and Zaffran, 2017). In
models with deficient retinoic acid signaling, aortic arch
abnormalities arise from loss or hypoplasia of the left and right
4th PAAs that contribute to the aortic arch and right subclavian
arteries, respectively (Hiruma et al., 2002; Li et al., 2012;
Niederreither et al., 2003; Vermot et al., 2003). Similarly, our
data indicate that the 4th PAA is typically bilaterally absent in the
majority of Hectd1opm/opm mutant embryos, with a small proportion
of embryos showing defects on only one side, consistent with the
spectrum of aortic arch abnormalities observed. The endothelium of
the PAAs is derived from the SHF, and reduced retinoic acid
signaling causes altered patterning of the SHF, including increased
expression of SHF markers such as Nkx2.5, Isl1, Gata4 and Fgf8
(Keegan et al., 2005; Li et al., 2012; Ryckebusch et al., 2008; Sirbu
et al., 2008; Verzi et al., 2005; Wang et al., 2017). In Hectd1opm/opm

mutants, expression of these markers is expanded. Thus, like
retinoic acid signaling, Hectd1 is required for normal SHF
patterning, PAA development and remodeling into the mature
aortic arch.
The 4th PAA phenotypes observed in E10.5 in Hectd1opm/opm

mutant embryos are consistent with contribution of these arteries to
the mature aortic arch and abnormalities observed at E14.5 (Hiruma
et al., 2002; Stewart, 1964). For example, loss of the left 4th PAA is
consistent with interrupted aortic arch type B and coarctation of the
aortic arch, as the left 4th PAA contributes to the segment of the
aortic arch between the left common carotid and subclavian arteries.
On the other hand, loss of the right 4th PAA would affect the right
subclavian artery, resulting in aberrant origin of the right subclavian
artery and right-sided aortic arch phenotypes. As 90% ofHectd1opm/
opm mutant embryos show bilateral loss of the 4th PAAs, there must
be some compensatory mechanisms to result in this array of
abnormalities of the mature artery network. Support for this idea
comes from analysis of Tbx1+/–;Raldh2+/– double heterozygous
embryos, where the majority of embryos show hypoplastic 4th
PAAs at E10.5 but by E11.5 many of these recover, suggesting a
delay in PAA formation (Ryckebusch et al., 2010). Interestingly,
many Hectd1 mutant embryos showed loss or hypoplasia of the 6th
PAA, which is fated to form the ductus arteriosus. However, the
ductus appeared to develop normally inHectd1opm/opm homozygous
and Hectd1opm/+;Raldh2+/– double heterozygous embryos. Thus,
some compensation or delayed recovery likely rescues development
of the ductus arteriosus in these embryos.
In contrast, linking abnormalities of the transverse arch, the

segment of the aortic arch between the brachiocephalic and left
common carotid arteries, to the 4th PAA defects is not as obvious.
Several Hectd1opm/opm mutants observed had a common origin of
the brachiocephalic and left common carotid arteries, a phenotype
that is caused by a severe shortening of the transverse arch and is
commonly given the misnomer ‘bovine arch’ (Moorehead et al.,
2016; Shaw et al., 2003; Spacek and Veselka, 2012; Stewart, 1964).
Interestingly, Hectd1opm/+;Raldh2+/– double heterozygotes also
exhibited shortening of the transverse arch, possibly a less-severe
variant of the common origin phenotype seen in Hectd1opm/opm

mutants. Additionally at E10.5, Hectd1opm/opm mutants had a high
frequency of missing left 4th PAAs, whereas the Hectd1opm/+;
Raldh2+/– double heterozygotes had a high frequency of
hypoplastic left 4th PAAs. Therefore, there might be a correlation
between aplasia or hypoplastic left 4th PAAs and alterations in the
length of the transverse arch. It is possible that these variant
phenotypes arise due to alterations in the very extensive and
complex remodeling of the symmetrical PAAs to the asymmetric
aortic arch (Gupta et al., 2015, 2016; Hernandez et al., 2014).

Therefore, although the left 4th PAAmight not directly contribute to
the transverse arch, its loss or underdevelopment can affect the
length of the arch after the PAAs are remodeled. Although further
study is needed to understand the origin of these phenotypes, our
data suggest that decreased Hectd1 gene dosage and/or retinoic acid
signaling could be a novel contributor to this normal variant.

In light of the similarities in aortic arch abnormalities and
underlying developmental mechanisms between Hectd1opm and
retinoic acid pathway mutants, identification of RARA as a
HECTD1-binding protein in a yeast two-hybrid screen provided
an interesting potential molecular mechanism. The binding of
fragments of HECTD1 and RARA observed in the yeast two-hybrid
assay were confirmed in an in vitro binding assay, and binding of
full-length overexpressed proteins was demonstrated in cells as well
as binding of endogenous proteins in MEFs. Interestingly, the
binding of endogenous proteins was detected under more stringent
conditions than overexpressed full-length proteins, possibly
suggesting cooperative binding involving a protein complex. This
is further supported by the observation that expression of ligase-
deficient HECTD1, similar to ligase-competent HECTD1, also
enhanced ubiquitination of RARA. However, significant levels of
ubiquitinated RARA are detected without HECTD1 transfection,
likely due to expression of endogenous HECTD1, a prediction
supported by the reduction of ubiquitinated RARA with small
interfering RNA (siRNA)-mediated knockdown of HECTD1 in
HEK cells and in Hectd1opm/opm mutant MEFs. Other ubiquitin
ligases can influence the ubiquitinated state of RARA, including
TRIM32, HACE1, RNF41 and RNF8 (Jing et al., 2008; Sato et al.,
2012, 2011; Takano et al., 2004; Zhao et al., 2009). These or other
uncharacterized ligases possibly cooperate with HECTD1 to
influence RARA ubiquitination, stability and function.

The biological effects of retinoic acid signaling are mediated by
retinoic acid receptors that bind to DNA as heterodimers consisting of
RARs and retinoid X receptors (RXRs) each with A, B and G
isoforms (Leid et al., 1992). These receptors act redundantly during
development and heterodimers of RARs and RXRA are key
mediators of retinoic acid signaling (Lee et al., 1997; Li et al.,
2010). Our data demonstrate that HECTD1 binds RARA; however,
deletion of RARA alone does not lead to significant defects in aortic
arch development (Li et al., 1993; Lufkin et al., 1993). Similarly,
RARB mutants do not show aortic arch defects (Luo et al., 1995;
Mendelsohn et al., 1994a,b). Although mutation of RXRA results in
defects inmyocardial growth in the ventricle, aortic arch development
appears normal (Sucov et al., 1994), Interestingly, HECTD1 binds
RARA in a region of the receptor that is highly homologous to other
RARs and RXRs. Based on this and the severe phenotype in
Hectd1opm mutants, it is very likely that HECTD1 interacts with
additional RARs during aortic arch development.

Our data do not address the molecular mechanism of how
HECTD1 regulates retinoic acid signaling. HECTD1 has multiple
substrates, a handful of which have been characterized (Aleidi et al.,
2018; Duhamel et al., 2018; Li et al., 2015a, 2013; Sarkar and Zohn,
2013; Shen et al., 2017; Tran et al., 2013). One described mechanism
of interest is the interaction of HECTD1 and the estrogen receptor
(Li et al., 2015a). The estrogen receptor, like RARs, is activated by
recruitment of transcriptional coactivators and corepressors that
enhance or repress transcription, respectively (Perissi and Rosenfeld,
2005). HECTD1 can regulate the association of the estrogen receptor
with coactivators and corepressors to modulate estrogen receptor
signaling (Li et al., 2015a). Thus, it is possible that HECTD1
regulates retinoic acid signaling by a similar mechanism during aortic
arch artery development.
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The causes of variations in aortic arch organization are complex,
with both monogenic and complex genetic etiologies with
environmental contributions (Blue et al., 2012; Edwards and
Gelb, 2016; Zaidi and Brueckner, 2017). Yet, how genes interact
with environmental factors to cause these CHDs remains poorly
understood. One challenge is the relatively few animal models and
experimental paradigms available to investigate gene-environment
interactions that cause abnormalities. Numerous genetic or
environmental models of vitamin A deficiency or teratogenicity
result in CHDs (Pan and Baker, 2007; Stefanovic and Zaffran,
2017), but very few studies address the role of susceptibility genes
that interact with either vitamin A deficiency or subteratogenic
exposures (Maynard et al., 2013). Our data demonstrate that
Hectd1opm/+ heterozygous mutant embryos show deficits in RARE
activation as well as SHF patterning. This prompted us to evaluate
whether heterozygous Hectd1opm/+ mutant embryos would be more
susceptible to defects by losing one copy of Raldh2 and therefore
reducing RARE activation by ∼20% (Maynard et al., 2013).
Reduced Raldh2 expression in Hectd1opm/+ embryos resulted in a
significant increase in the occurrence of hypoplastic 4th PAAs and
subsequent shortening of the transverse arch between the
brachiocephalic and left common carotid arteries. However, these
phenotypes were not as severe as those observed in Hectd1opm/opm

homozygous mutants. Therefore, it is possible that combined
changes in Hectd1 gene dosage and retinoic acid signaling result in
a range of aortic arch abnormalities. Based on this work, we present
a model system that can analyze how alterations in gene expression,
environmental factors or both can alter aortic arch organization,
furthering our understanding of genetic and environmental
influences on heart development.

MATERIALS AND METHODS
Mouse strains and analysis of mutant phenotype
Mus musculus lines were maintained in the animal facility of Children’s
National Health System with all animal procedures in compliance with the
National Institutes of Health and the Children’s Research Institute
Institutional Animal Care and Use Committee (IACUC) guidelines for
animal use. Hectd1opm, Hectd1Gt(XC266)Byg (Hectd1XC), Aldh1a2tm1Gdu

(Raldh2+/–) and the Tg(RARE-Hspa1b/lacZ)12Jrt (RARE-LacZ) reporter
lines were maintained on the 129/SvJ background for upwards of ten
generations and were previously described (Mic et al., 2002; Rossant et al.,
1991; Zohn et al., 2007). Mice were fed standard mouse chow (Tekland,
8604) that contains 12.9 IU/g vitamin A as retinyl acetate. Female mice were
between 3 months and 1 year old at the time of mating.

India ink injections were performed as described (Jianbin et al., 2008)
using a 1:1 mixture of gelatin (Sigma-Aldrich) and India ink (Pelikan). For
labeling of the aortic arch and arteries, freshly harvested E14.5 or E17.5
embryos were injected with the ink solution using an insulin needle followed
by overnight fixation in 4% paraformaldehyde. For labeling of the PAAs, the
ink solution was injected into the left ventricle of E10.5 embryos (32- to
36-somite stage) using a mouth pipette attached to a pulled glass needle.
Aortic arch and artery abnormalities were diagnosed by three experienced
observers. PAA phenotypes were scored blind to genotype by two
experienced observers. Representative images were acquired using a Zeiss
Lumar microscope with an Axiocam HRc camera (Zeiss) and Axiovision
(4.6) software and processed using Adobe Photoshop (14.2). The frequency
of each phenotype was calculated, and statistical significance between groups
was determined by the Chi2 test with Bonferroni correction for multiple
comparisons using GraphPad PRISM for Mac OS X (Version 6.0d).

For fluorescence imaging of the PAAs, embryos were fixed for 1 h in 4%
paraformaldehyde and then dehydrated in a methanol series. Rehydrated
embryos were incubated overnight at 4°C with anti-CD31/PECAM1
primary antibody (BD Pharmingen, 550274; 1:250), washed extensively,
and then incubated overnight at 4°C with Alexa-Fluor-546-conjugated goat
anti-rat IgG (H+L) cross-absorbed secondary antibody (Thermo Fisher

Scientific, A-11081; 1:250). Embryos were dehydrated through a methanol
series, cleared in benzyl alcohol:benzyl benzoate (BABB), and imaged in
1 μm optical sections using the Olympus Fluoview FV1000 confocal
microscope and accompanying Olympus imaging software. Z-stacks were
assembled to create 2D projections using Olympus, ImageJ (1.48v) and Fiji
(2.0.0) software. Whole-mount in situ hybridization was performed as
previously described (Holmes and Niswander, 2001; Zohn et al., 2006),
with probes for Fgf8 (Tanaka et al., 1992), Nkx2.5 (Lints et al., 1993) and
Tbx1 (Chapman et al., 1996). Images were acquired using a Zeiss Lumar
microscope with an Axiocam HRc camera (Zeiss) and Axiovision (4.6)
software and processed using Adobe Photoshop (14.2). Whole-mount
in-situ-stained embryos were sectioned and images taken on an Olympus
BX63 upright microscope. Figures were assembled in Adobe Illustrator
(17.1.0) and Microsoft PowerPoint for Mac 2011 (Version 12.6.2).

qPCR
For qPCR, embryos were harvested at E9.5 and the pharyngeal region was
dissected by bisecting the embryo between the maxillary and mandibular
process of the first pharyngeal arch at the anterior end and between the heart
tube and anterior limb bud at the posterior end (see Fig. 3D for dissection
coordinates). The dissected pharyngeal region was dissociated in TRIzol
(Invitrogen), RNA was extracted according to the manufacturer’s
instructions then diluted to 10 ng/μl. DNase digestion and complementary
DNA (cDNA) synthesis were performed using the iScript gDNA Clear
cDNA Synthesis Kit (Bio-Rad). RNA and cDNA concentrations were
measured using a NanoDrop 1000 Spectrophotometer (Thermo Fisher
Scientific). For qPCR, 2 μl cDNA (1000 ng/μl) was diluted in SsoAdvanced
Universal SYBR Green Supermix (Bio-Rad). All gene-specific primers
(10 nM, Table S2) were derived from previously published sequences and
validated by melt-curve analysis (Lin et al., 2010; Maynard et al., 2013).
qPCR was performed using the CFX96 Machine (Bio-Rad) under the
following conditions: 95°C for 30 s, followed by 40 cycles of 95°C for 5 s
and 60°C for 30 s. Expression levels were normalized to Gapdh and
analyzed by CFX Manager Software (Bio-Rad, Version 3.1). Statistical
significance of differences between the relative normalized expression of
wild type and Hectd1opm/opm mutants for each marker was determined by
unpaired two-tailed Student’s t-test using GraphPad PRISM for Mac OS X
(Version 6.0d). Outliers were tested using Grubb’s outlier test on GraphPad
PRISM (Version 6.0d) that identified a singleHectd1opm/opmmutant sample
as an outlier and removed it from analysis.

Biochemical analyses
pCMV-Myc-HECTD1(1-551), pCMV-HA-HECTD1 and pCMV-HA-
HECTD1C2579G (Hectd1CG; active site cysteine at position 2579 mutated to
glycine) were previously described (Sarkar and Zohn, 2012). RARA-pcmv6
(Addgene, 35555) was modified with the addition of an amino terminal Myc-
tag. Antibodies used in this study were anti-hemagglutinin (HA; Clontech,
631207; 1 µg/ml), anti-Myc (Clontech, 631206; 2 µg/ml), anti-RARA (Cell
Signaling Technology, 2554; 1:1000), polyubiquitinylated conjugates
monoclonal antibody (Clone FK1 Biomol, PW8805), FK2H (Biomol,
PW0150; 1:1000), anti-HECTD1 (Novus Biologicals, H00025831; 1:500)
and anti-GAPDH (Cell Signaling Technology, 2118; 1:1000). MEFs were
prepared according to a standard protocol from individual E12.5 mouse
embryo heads (Nagy et al., 2003), and HEK293T cells were from American
Type Culture Collection (CRL-11268). Both cell lines were used at low
passage numbers (<5). HEK293T cells were transfected using Lipofectamine
2000 Reagent (Invitrogen, 11668-019) according to the manufacturer’s
instructions.All biochemical data are representative of experiments performed
at least twice.

Yeast two-hybrid and binding assays were performed as described
(Sarkar and Zohn, 2012). Immunoprecipitation buffer (50 mMTris-HCl, pH
7.5, 1 mM EDTA, 150 mM NaCl and 0.1% Triton X-100 with protease
inhibitor cocktail) was used for less-stringent conditions, while RIPA buffer
(Thermo Fisher Scientific, 89901) was used for stringent binding
conditions. For ubiquitination assays, cells were treated for 4 h before
lysis with 10 µM ALLN (Calbiochem, 208719). HEK293T cells were lysed
48 h post-transfection with a modified ubiquitination assay buffer (50 mM
HEPES pH7.5, 5 mM EDTA, 150 mM NaCl, 1% Triton X-100, 10 mM
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N-ethylmaleimide, 1 mM PMSF, 2 µM ubiquitin aldehyde, 10 µM ALLN
and 0.5% SDS) with the addition of a single complete protease inhibitor
cocktail (Roche, 04693116001) and phosStop cocktail (Roche,
04906837001) tablet per 10 ml buffer.

Analysis of RARE activation
Luciferase assays were performed on MEFs transfected using
Lipofectamine LTX with Plus Reagent (Invitrogen, 15338-100) and with
the βRE2-TK-Luc plasmid (Sucov et al., 1990) and pRL-TK plasmid
(Promega, E2241). At 24 h post-transfection, cells were treated for 18 h with
10 µM ATRA, as indicated. Luciferase assays were performed using the
Dual-Luciferase Reporter Assay System (Promega, E1910) and a Turner
Biosystems luminometer (Model 2030-000). Statistical significance of
RARE activation between wild-type and Hectd1opm/opm MEFs was
determined by the unpaired two-tailed Student’s t-test using GraphPad
PRISM for Mac OS X (Version 6.0d). For quantification of β-gal expression
in E9.5 RARE-LacZ embryos, whole-embryo littermate pairs were
dissociated in 1× Reporter Lysis Buffer from the Beta-Galactosidase
Enzyme Assay System (Promega) as described (Maynard et al., 2013). The
level of absorbance at 420 nm of samples was interpolated to a standard
β-gal curve to determine activity in milliunits using GraphPad PRISM for
Mac OS X (Version 6.0d). Protein concentration was determined using a
BCA Protein Quantification Kit (Abcam). The final measure of RARE
activation was calculated by dividing milliunits of β-gal activity by protein
concentration of each embryo using Microsoft Excel for Mac 2011 (Version
12.6.2). β-gal and protein quantification were determined using a Fluostar
Optima Plate Reader (BMG Labtech). Statistical significance between wild-
type and Hectd1opm/+ or Hectd1opm/opm values was determined by the
unpaired two-tailed Student’s t-test using GraphPad PRISM for Mac OS X
(Version 6.0d). Whole-mount β-gal staining was performed as described
(Nagy et al., 2003). Images were acquired using a Zeiss Lumar microscope
with an Axiocam HRc camera (Zeiss) and Axiovision (4.6) software and
processed using Adobe Photoshop (14.2).
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