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Fig. 6. Attenuation of neuromuscular degeneration and locomotor deficits in the CG2135 / fly by resveratrol treatment. (A-C) Immunostaining of the 30-
day-old fly brains with anti-tyrosine-hydroxylase antibody (green), showing the number of dopaminergic neurons in 30-day-old WT and CG2135~/~ flies fed on normal
diet as opposed to the age-matched CG2135~'~ fly fed with resveratrol. Enlarged view of a dopaminergic neuron cell body from the boxed regions of the

brain is provided in the insets. (D) Bar graph represents the number of dopaminergic neuron cell bodies in the fly brains. (E-J) TUNEL staining (red) of the thoracic
muscles, showing widespread myocyte apoptosis in the CG2135~'~ fly but not in the WT fly or resveratrol-fed CG2135~'~ fly. The total number of nuclei is marked by
DAPI staining (blue). (K) Percentage of TUNEL-positive nuclei (apoptotic cells) in the 30-day-old WT and the CG2135~/~ fly fed on normal diet as opposed to
the age-matched CG2135/~ fly fed with resveratrol. (L) Climbing index of 30-day-old WT and the CG2135~'~ flies fed on normal diet as opposed to the age-matched
CG2135~"~ fly fed with resveratrol (N~200). Error bar represents s.e.m. of values from >three independent experiments. *P<0.05, **P<0.01, ***P<0.001.

Nevertheless, our results provide a strong impetus for further studies to
explore the possible use of resveratrol as an alternative treatment
strategy for MPS VIL

Apart from being a convenient drug screening platform, the
CG21357~ fly may also be utilized for large-scale genetic
screenings leading to identification of modifiers of the disease
phenotype (St Johnston, 2002). Such carefully designed screens
have earlier led to the identification of genetic suppressors of
polyglutamine toxicity in flies (Kazemi-Esfarjani and Benzer,
2000). Therefore, this novel model of MPS VII, combined with the
power of fly genetics, holds the key to deeper exploration of the
disease mechanism and drug discovery. The findings derived from
this model may also have broader implications in understanding and
managing other closely related MPS disorders.

MATERIALS AND METHODS
Unless specified otherwise, all reagents were from Sigma-Aldrich. Details
of all the primers (IDT) are provided in Table S1.

Drosophila strains and maintenance
w!18 actin 5C Gal4, FLP, I-Scel and balancer flies were all obtained from
the Bloomington Drosophila Stock Center at Indiana University, USA. Flies
were maintained at 25°C, at controlled density, with 12 h day-night cycle on
a standard cornmeal agar medium. Wherever indicated, 400 uM resveratrol
(Calbiochem) was added in the fly food.

Cell culture

S2 cells (kindly provided by Dr Sankar Maiti, [ISER Kolkata, India) were
cultured at 28°C in Schneider’s medium supplemented with 10% fetal
bovine serum (FBS; Gibco), 2 mM L-glutamine, 100 U/ml penicillin and
100 pg/ml streptomycin.

-GUS assay
As described previously, B-GUS activity was measured fluorometrically using
4-methylumbelliferyl f-D-glucuronide as substrate (Glaser and Sly, 1973).

Briefly, tissues/cells were lysed by homogenization/sonication and the assay
was performed at 37°C for varying times using 100 pl of the substrate solution
containing 10 mM 4-methylumbelliferyl B-D-glucuronide and 1 mg/ml BSA
in 0.1 M acetate buffer, pH 4.8. The reaction was stopped by adding glycine-
carbonate buffer, pH 10.5, following which the product was quantified
fluorometrically with respect to a standard curve generated using known
concentrations of 4-methylumbelliferone. The B-GUS activity was
normalized to protein concentration, determined by Lowry’s method
(Lowry et al., 1951).

RNA isolation and RT-PCR

Total RNA from tissues was isolated using TRIzol reagent (Thermo Fisher
Scientific). DNA contaminants were removed by DNase I (Invitrogen)
treatment. DNA-free RNA (1 pg) was reverse transcribed using a cDNA
synthesis kit (Invitrogen). The cDNA was used as a template for the PCR
reactions with specific primers.

Cloning, expression and protein purification

Coding regions of the CG2135 and CG15117 genes were PCR amplified
from the whole fly cDNA using gene-specific primer sets P7/P8 and P9/P10,
and cloned in the pMT-puro vector (Addgene). Designing of the reverse
primers ensured in-frame addition of a hexa-histidine coding sequence at the
C-terminal end of the cDNAs. The clones were verified by sequencing,
following which the constructs were transfected in S2 cells by calcium
phosphate method (Sambrook and Russell, 2016). Stably transfected S2
cells were selected in puromycin-containing medium. For protein induction,
the cells were grown for 96 h in serum-free medium in the presence of
500 uM CuSOy. Since a substantial amount of the overexpressed protein
was secreted out of the cell (as indicated by B-GUS assay), a total of 300 ml
of the conditioned media was collected in batches and used for protein
purification. The media was subjected to ammonium sulfate precipitation in
three stages: 0-30%, 30-65% and 65-80%. For both CG2135 and CG15117,
maximum B-GUS activity was detected in the 30-65% pellet fraction, which
was dissolved in a minimum volume of 50 mM sodium phosphate buffer
(pH 8.0) containing 10 mM imidazole and 300 mM sodium chloride. The
solutions were extensively dialyzed against the same buffer and the
recombinant enzymes were purified to homogeneity by Ni-NTA (Qiagen)
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affinity chromatography, following the manufacturer’s suggested protocol.
Protein purity was confirmed by SDS-PAGE followed by silver staining.

Generation of CG2135 knockout and rescue flies

The CG21357'~ fly was generated by ends-out gene targeting (Rong and
Golic, 2000). For this, 5" and 3" untranslated regions (UTRs) of the CG2135
gene (corresponding to the 3R:31771758-31774848 and the 3R:31768557—
31771547genomic regions of the Drosophila melanogaster genome,
respectively) was PCR amplified using P11/P12 and P13/P14 primer sets.
The amplified 5" and 3’ UTRs were respectively subcloned into Nozl and
Kpnl/BamHI restriction sites of the pw35Gal4 vector (a kind gift from Dr
Craig Montell, USCB, USA). The targeting construct was verified by
sequencing and then used to generate a donor transgenic fly (in w!'!'!®
background) by germline transformation (embryo microinjection service
provided by C-CAMP, Bangalore, India). For targeting of the CG2135
gene, the donor transgenic fly was crossed with the w[1118];
P{ry[+t7.2]=70FLP}23 P{v[+t1.8]=70I-Scel }4A/TM3,Sb[1] fly
(Bloomington stock number 6935). The larval progenies were heat-
shocked at 37°C for 1h for two subsequent days to induce FLP and
1-Scel expression. The targeting construct was excised from the genome as a
circular DNA by FLP recombinase, which was subsequently linearized by
I-Scel endonuclease. The highly recombinogenic linearized targeting
construct can, in principle, disrupt the CG2135 gene in somatic as well as
germ cells by replacing a 212-bp coding sequence with the targeting
construct containing mini-white and Gal4 markers. Flies in which such
homologous recombination has happened were selected based on a red-
white mosaic eye pattern (Maggert et al., 2008). Those flies were
individually mated to w!!'%; Pin/Cyo;TM2, Ubx[130] e[s]/TM6B,e[1]
Tb[1] balancer fly. Red-eyed progenies were selected and backcrossed to the
same balancer fly to obtain the CG2/35~'~ fly. Balancer and marker from
the second chromosome were replaced with wild chromosome by using
wll8: /4 TM2, Ubx[130] e[s}/TM6B,e[1] Tb[1] to get pure w'!!8; +/+;
CG2135~'~ flies. For generation of the rescue fly, CG2135 cDNA was PCR
amplified using the P7/P21 primer set and subcloned into the X%ol site of the
pUAST vector (DGRC). The clone was verified by sequencing. The
construct was microinjected in w!!'® embryos and progeny was selected on
the basis of the red eye colour marker. The fly containing the construct in the
second chromosome was selected by chromosomal mapping. The actin 5C
Gal4 driver was used to drive the UAS-CG2135 in rescue flies. Genotypes of
the knockout and rescue flies were confirmed by genomic PCR with
appropriate primer sets.

Lifespan analysis

Total 120 newly eclosed flies were used for lifespan analysis. Males and females
were separated and 20 flies were placed per vial. The flies were transferred to
fresh vials every alternate day and the number of dead flies was recorded. Mean
lifespan was calculated from the survivorship curve that represents percent
survival with increasing age. Maximum lifespan was calculated as average age
of the top 10% long-lived flies (Lushchak et al., 2012).

Climbing assay

The climbing assay was performed as described earlier (Strauss and
Heisenberg, 1993; Venkatachalam et al., 2008). For each set, 20-25 flies
were acclimatized for 24 h and then transferred to a 50 ml graduated
cylinder. The flies were gently tapped to the bottom, following which they
immediately tend to climb up because of their negative geotactic behaviour.
The climbing index was calculated as the percentage of flies that could climb
up to the 25 ml mark within 15 s. Each experiment was performed several
times with more than 100 flies.

Egg laying and hatching assays

Freshly eclosed healthy male and female flies were kept separated for 3 days
to attain maturity, following which they were mated at a 1:1 male:female
ratio. As soon as the first batch of embryos emerged, the female flies were
placed in separate wells with fly food. After 24 h, the flies were discarded
and the number of embryos laid per day was counted. Hatching assay was
performed in a 35 mm dish with fly food, each containing 50 freshly

collected embryos. A moist paper was kept at the side of each plate to
prevent drying. The number of unhatched embryos was counted after 48 h.

Tissue processing, staining and imaging

For brain histology, the tissues were fixed in 2.5% glutaraldehyde for 4 h
followed by post-fixation in 2% osmium tetraoxide for 2 h. The tissues were
then subjected to ethanol dehydration and embedded in Epon. Semi-thin
transverse sections (0.5 um) were prepared and were stained with 0.1%
Toluidine Blue. For examination of the retinas, whole fly heads were
similarly fixed with glutaraldehyde—osmium-tetroxide and embedded in
Epon. Tangential retinal sections (0.5 pm) were stained with Toluidine Blue.
The thoracic muscles were fixed with 4% paraformaldehyde overnight. The
fixed tissues were dehydrated in increasing concentrations of ethanol,
infiltrated with paraffin wax, followed by embedding in paraffin moulds.
Finally, thick sections (4 pum) were prepared and stained with haematoxylin
and eosin. All tissue sections were analyzed by light microscopy. For whole-
mount immunohistochemistry, the fly brains were dissected in S2 media
supplemented with 15% FBS. Immediately after dissection, the tissues
were fixed in 4% paraformaldehyde for 30 min and immunostaining was
performed as described previously (Wu and Luo, 2006). Briefly, the tissues
were incubated overnight with primary antibody at 4°C followed by washing
three times. The following primary antibodies were used at the indicated
dilutions: rabbit anti-tyrosine hydroxylase (Merck Millipore; 1:400) or
rabbit anti-ubiquitin (Cell Signaling; 1:200). Anti-rabbit Alexa-Fluor-488 or
anti-mouse Alexa-Fluor-568 goat secondary antibodies (Molecular Probes;
1:500, 3 h incubation at room temperature) were used for detection.
LysoTracker Red (100 nM) and MitoTracker Red (250 nM) staining was
done in live brain tissues following the manufacturer’s (both from Thermo
Fisher Scientific) instructions. After staining, the tissues were mounted in
Vectashield (Vector Laboratories) mounting medium and fluorescence
imaging was performed with Apotome.2 microscope (Carl Zeiss). A total of
9-12 image tiles were taken using the motorized stage where images of 5
slices of 0.32 um were present in each tile. The images were reconstructed
by the microscope’s own software (ZEN) and analyzed. Mean fluorescence
intensity in the Drosophila whole-brain image was calculated using ImageJ
software. TUNEL staining of muscle sections was performed as per the
manufacturer’s (Roche) instructions.

Statistical analysis

Statistical analyses were performed by paired two-tailed Student’s #-test
using GraphPad Prism. The results were expressed as the means.e.m. from
at least three independent experiments. P-values <0.05 were considered as
statistically significant as indicated by asterisks: *P<0.05, **P<0.01 and
***P<0.001.
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