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ABSTRACT
Probing cellular population diversity at single-cell resolution became
possible only in recent years. The popularity of single-cell ‘omic’
approaches, which allow researchers to dissect sample heterogeneity
and cell-to-cell variation, continues to grow. With continuous
technological improvements, single-cell omics are becoming
increasingly prevalent and contribute to the discovery of new and
rare cell types, and to the deciphering of disease pathogenesis and
outcome. Animal models of human diseases have significantly
facilitated our understanding of the mechanisms driving pathologies
and resulted in the development of more efficient therapies. The
applicationof single-cell omics toanimalmodels improves the precision
of the obtained insights, and brings single-cell technology closer to the
clinical field. This Review focuses on the use of single-cell omics in
cellular and animal models of diseases, as well as in samples from
human patients. It also highlights the potential of these approaches to
further improve the diagnosis and treatment of various pathologies, and
includes a discussion of the advantages and remaining challenges in
implementing these technologies into clinical practice.
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Introduction
Human body tissues are heterogeneous environments composed of
numerous types of cells with unique functions and at various stages
of differentiation. Until recently, the understanding of disease
mechanisms progressed by studying cell populations in bulk. The
main limitation of this approach is that it reveals only the average
features of the population’s constituents and can obscure the cell-to-
cell variability present in all tissues. Indeed, an average trait within a
population is often not representative of the state of any individual
cell (Altschuler and Wu, 2010). Even within populations that are
homogeneous in terms of cell surface markers, hidden cell-to-cell
variations have direct and significant consequences on the cell
function. Recent advances in methodology and cost effectiveness of
high-throughput ‘omic’ technologies have enabled their application
to the study of single cells, allowing a complete and unbiased
analysis of the content of individual cells. The technical aspects of
the many single-cell omic approaches are available in several
excellent reviews (Clark et al., 2016; Gawad et al., 2016; Mincarelli

et al., 2018; Svensson et al., 2018) and are not covered here. The aim
of this Review is to summarise the current applications of single-cell
omics in model organisms and in humans, and to highlight the
potential of these approaches for improving the diagnosis and
treatment of diseases.

Omic technologies with single-cell precision
Single-cell genomics
Single-cell DNA sequencing can be used to resolve the variation
between individual cells at the genomic level. The most common
parameters assayed in this type of analysis include the number of
single-nucleotide variants (SNVs), which occur at an estimated rate
of∼1500 per human cell (Lodato et al., 2015), and subchromosomal
copy-number variants (CNVs), which are thought to develop at least
once in 30-70% of cells (Knouse et al., 2016). CNVs can be
detected at a low sequencing coverage (<1×), whereas SNV analysis
typically requires a higher sequencing depth (15-50×) (Woodworth
et al., 2017). Other somatic mutations include the insertion of
retroelements (see Glossary, Box 1), the rate of which is estimated to
be <1 per cell, and variations in microsatellites (Box 1), which are
believed to be the most highly variable regions of the genome
(Woodworth et al., 2017). As the DNA content of a single cell is
estimated to be 6 pg, which is not sufficient as an input for
sequencing, several amplification methods have been established
(Gawad et al., 2016; Wang and Song, 2017). While most single-cell
genome sequencing studies have profiled up to hundreds of cells,
a combinatorial indexing technique has recently enabled the
sequencing of more than 15,000 cells, with the coverage level
suitable to identify CNVs (Vitak et al., 2017).

Cancer biology is one of the research areas that greatly benefited
from the application of single-cell DNA sequencing. Tumours are
mosaic tissues arising from different clones, and single-cell DNA
sequencing is a powerful tool for following the progression and
expansion of individual clones (Gawad et al., 2016; Navin et al.,
2011). In addition, single-cell DNA sequencing allows researchers
to study the genetic alterations of rare cell types, such as cancer stem
cells (CSCs; Box 1), which are important for tumour relapse and
would otherwise be overlooked by traditional, bulk analyses
(Liu et al., 2017). With single-cell DNA sequencing, researchers
can reconstruct cell lineage trees with high precision by detecting
somatic mutations that occur in every DNA replication (Frumkin
et al., 2005). Nevertheless, many challenges remain to be solved in
the single-cell genomic analysis, including allelic dropouts (Box 1),
low and non-uniform coverage of large genomes and false-positive
errors, in addition to relatively high costs (Navin, 2014; Sabina and
Leamon, 2015; Mincarelli et al., 2018).

Single-cell epigenomics
Although bulk-level studies have identified key epigenetic
signatures correlated with active or inactive transcriptional states,
this approach fails to detect intercellular differences that can have
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functional consequences (Bheda and Schneider, 2014). Identifying
epigenetic events at the single-cell level is particularly informative
during development, whereby a small number of cells are particularly
affected by epigenetic changes (Clark et al., 2016). As transcriptional
repression is closely associated with cytosine methylation, the single-
cell variant of bisulfite genomic sequencing (Box 1) has been
developed, allowing the detection of the methylation status of CpG
sites (genomic regions characterised by the presence of a cytosine
nucleotide followed by a guanine one) across the genome. The main
limitation of this method is poor genome coverage (20-40%)
(Smallwood et al., 2014). Single-cell techniques can also assess
chromatin accessibility. The combination of multiplex barcoding and
transposase-accessible chromatin sequencing (ATAC-seq; Box 1)
allows the simultaneous investigation of the chromatin state in 15,000
cells, albeit with low sequencing depth (Cusanovich et al., 2015).
Despite the recent advances, single-cell epigenomics is still in its
infancy compared with genomics and transcriptomics, and therefore
it is not yet widely applied to study the corresponding pathologies
(Mincarelli et al., 2018).

Single-cell transcriptomics
Single-cell RNA sequencing (scRNA-seq) technologies have
advanced rapidly in recent years. These techniques rely on the
conversion of RNA into complementary DNA, which is then
amplified to obtain large enough quantities for sequencing. The
first transcriptome-wide profiling of a single cell was reported in
2009 (Tang et al., 2009), followed by the development of many
other platforms, summarised in a recent review by Svensson
and colleagues (Svensson et al., 2018). In particular, sample
multiplexing has enabled the analysis of hundreds of cells with
100,000-4,000,000 reads per cell, while droplet-based and nanowell
approaches allow several thousands of cells to be analysed, albeit at
a lower coverage, with 20,000-200,000 reads per cell (Mincarelli
et al., 2018). Studying the transcriptome of individual cells is a
useful tool because it allows an unbiased determination of the
cell state, representing a step forward from the use of surface
markers, wherein cells that homogeneously express such markers
can differ substantially in their transcriptome, state and function
(Altschuler and Wu, 2010). Recently, the application of scRNA-seq
technologies allowed the revisiting and reconstruction of the
traditional haematopoietic lineage tree, and showed that
haematopoietic differentiation is a continuous rather than a
stepwise process (Notta et al., 2016; Athanasiadis et al., 2017;
Velten et al., 2017). Technological advances and a wide adoption
of scRNA-seq approaches have shifted the application of this
method from descriptive analyses of cell heterogeneity towards
the understanding of disease mechanisms. We summarise examples
in the fields of immunity, cancer and neurodegenerative
disorders below.

Single-cell proteomics
Proteome analysis at the single-cell level could provide essential
information on the state and function of a cell. However, analysing
the protein content of a single cell is challenging, mainly due to the
lack of methods for protein amplification. In recent years, cytometry
approaches based on fluorescence-activated cell sorting (FACS) and
single-cell mass spectrometry (termed CyTOF) became available
for medium-throughput studies (∼40-50 proteins), but are limited
by the availability of the corresponding antibodies (Mincarelli et al.,
2018). Furthermore, approaches based on liquid chromatography
and tandem mass spectrometry have been successfully used to
detect up to 450 proteins in single oocytes. Nevertheless, the

Box 1. Glossary
Allelic dropout: loss of one allele during polymerase chain reaction
(PCR) amplification of DNA. It represents a common source of error in
genotyping.

Amyloid beta (Aβ): a peptide generated from the amyloid precursor
protein by γ-secretase cleavage. The accumulation of Aβ in the brain is
proposed to be involved in the pathogenesis of Alzheimer’s disease.

Bisulfite genomic sequencing: a method used for the detection of
DNA methylation. It is based on bisulfite treatment, which converts non-
methylated cytosines into uracil residues, while leaving methylated
cytosines unchanged, thus allowing their distinguishing.

Cancer stem cells (CSCs): a rare population of cells found in solid
tumours and haematological malignancies able to self-renew and
differentiate, and therefore act as a reservoir of cancer cells that can
cause a relapse after successful treatment.

Circulating tumour cells (CTCs): cells that disseminate from the
tumour site and enter the circulation. They are known biomarkers in liquid
biopsies and their concentration in patient blood is used as a prognostic
parameter.

gDNA-mRNA sequencing (DR-seq): a method for the simultaneous
detection of DNA and RNA from the same sample. Here, genomic DNA
and complementary DNA, generated by reverse transcription from RNA,
are amplified together before being separated for further reactions.

Genome and transcriptome sequencing (G&T sequencing): a
method for the simultaneous detection of DNA and RNA from the
same sample. In this method, mRNA and gDNA are physically separated
from the cell lysate using beads that capture the polyadenylated portion
of mRNA, and amplified separately.

In situ hybridisation: a method that uses labelled complementary
probes to detect specific DNA or RNA sequences in a tissue.

Microfluidic device: an instrument that uses small amounts of fluids in
miniaturised channels to perform laboratory tests.

Microsatellites: repeated sequences of DNA that represent highly
variable regions of the genome.

Multiplexed error-robust fluorescence in situ hybridisation
(MERFISH): a method for the detection and quantification of RNA
molecules within the histological context. This technique is based on
combinatorial in situ hybridisation labelling and sequential imaging.

Myeloma: a form of bone marrow cancer arising from plasma cells.

Narcolepsy: a neurological sleep disorder associated with the
destruction of orexin-producing neurons.

Quantitative hybridisation chain reaction (qHCR): a method for the
quantification of mRNA expression with subcellular resolution. It is based
on DNA probes that hybridise the target and initiate the assembly of
fluorescent polymers.

Retroelements: mobile elements of eukaryotic genomes, constituting
nearly 50% of the human genome, which are able to transpose to other
locations of the genome through an RNA intermediate.

RNAscope: an in situ hybridisation assay that enables the detection of
RNA sequences within intact tissues and cells.

Soluble amyloid precursor protein alpha (sAPPα): a peptide
generated from amyloid precursor protein by the α-secretase cleavage.
Generation of sAPPα precludes Aβ generation from the same precursor
molecule.

Spatial transcriptomics: a technique that enables the examination of
the spatial distribution of mRNA from RNA sequencing data in the tissue
sections.

Transposase-accessible chromatin sequencing (ATAC-seq): a
method to study genome-wide chromatin accessibility, using Tn5
transposase to insert sequencing primers into regions of open chromatin.

Transposome hypersensitivity side sequencing: a highly sensitive
method to characterise chromatin accessibility. In contrast to ATAC-seq,
it uses a customised Tn5 transposome system to attach a T7 promoter to
the end of every DNA molecule after in vitro transposition.
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analysis of smaller cells, which contain lower amounts of proteins,
remains challenging (Virant-Klun et al., 2016).

Single-cell multiomics
The past few years have seen the rise of the so-called multiomics at
the single-cell level, involving the simultaneous analysis of multiple
molecular features within the same cell. Such parallel analysis of the
genome and transcriptome is appealing because it links the
genotype of a cell to its phenotype. Additionally, it represents a
powerful tool for the reconstruction of developmental lineage trees,
because of the possibility to follow the somatic mutations that
accumulate in the genome over time, and at the same time to link
those to the phenotypic changes in the cell (Macaulay et al., 2017).
Two of the most common methods in single-cell multiomic studies
are genomic DNA (gDNA)-messenger RNA (mRNA) sequencing
(DR-seq; Box 1) (Dey et al., 2015) and genome and transcriptome
sequencing (G&T-seq; Box 1) (Macaulay et al., 2017), which
allow the simultaneous interrogation of DNA and RNA from a
single cell. Conversely, the concurrent study of the epigenome
and transcriptome of a cell gives useful insights into the regulation
of gene expression, and can help to elucidate the individual
contributions of epigenetic and transcriptional changes to the cell

commitment and fate choice. Accordingly, several approaches
that combine single-cell bisulfite genome sequencing and RNA
sequencing have been developed (Guo et al., 2013; Smallwood
et al., 2014). Researchers also attempted to develop tools for the
parallel detection of proteome and transcriptome in the same cell,
but the single-cell proteomic technologies are not yet sensitive
enough to cover large numbers of proteins, and further advances in
technology are needed to achieve the necessary wider coverage
(Macaulay et al., 2017).

Single-cell omics applied to disease
Infections: host-pathogen interactions at the single-cell level
Infectious diseases are one of the leading causes of mortality
worldwide (Fauci, 2001). Host-pathogen interactions underlie the
disease pathogenesis and determine the outcome of the infection
(Fig. 1). These interactions are highly diverse and complex: both
pathogens and immune cells display extensive cell-to-cell
variability, and both undergo changes in gene expression upon
infection (Avraham et al., 2015; Saliba et al., 2016). Therefore,
traditional bulk assays are poorly suited to study these interactions,
as they neglect important cell-to-cell variation that contributes to the
infection outcome. The development of single-cell technologies is

Single cell

Protein
Proteomics
• CyTOF

Genomics
• NGS

Epigenomics
• ATAC-seq
• bisulfite sequencing

• new immunotherapy strategies
• characterisation of CSCs and CTCs 
• origin of metastasis

• better understanding of infection progress
• discovery of new genes underlying 
   diseases phenotypes
• microbiota-immune cell crosstalk in
   auto-inflammatory disorders

• discovery of druggable targets
• understanding of age-related
   cognitive decline
• characterisation of pathological
   pathways

Host-microorganism interactions Molecular targets 

Transcriptomics 
• plate-based methods (i.e. Smart-seq2)
• droplet-based methods (i.e. 10x)
• spatial transcriptomics

Diseases and associated changes

DNA

RNA

Fig. 1. Application of single-cell omic technologies to study diseases.Combined information about the transcriptome, genome, proteome and epigenome of
a single cell, obtained with constantly evolving technologies, will drive the progress of personalised medicine and generation of improved targeted therapies.
ATAC-seq, transposase-accessible chromatin sequencing; CSCs, cancer stem cells; CTCs, circulating tumour cells; CyTOF, cytometry time-of-flight mass
spectrometry; NGS, next generation sequencing.
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providing unprecedented insight into host-pathogen interactions at
the single-cell level, allowing the better identification of virulence
agents and mechanisms of host defence. Single-cell approaches
have already been applied to study viral, bacterial and parasitic
infections, as well as the interactions between commensal bacteria
and host immune cells (Avraham et al., 2015; Guo et al., 2017;
Gury-BenAri et al., 2016; Reid et al., 2018; Saliba et al., 2016;
Steuerman et al., 2018).
Several reports have described host-virus interactions at the

single-cell level, mostly using fluorescent techniques to monitor
virus behaviour in the infected cells (Akpinar et al., 2016; Schulte
and Andino, 2014; Warrick et al., 2016). For instance, Guo et al.
created a microfluidic device (Box 1) combined with a fluorescent
microscope to evaluate the kinetics of poliovirus infection in
individual cells (Guo et al., 2017). This single-cell resolution
revealed the variation in virus replication kinetics between
individual cells. Moreover, they showed that the virus replication
potential was host cell dependent, indicating that host cell
population heterogeneity influences the outcome of a viral
infection. Steuerman at al. utilised scRNA-seq in a mouse model
to investigate heterogeneity in the response of lung tissue cells to an
influenza infection (Steuerman et al., 2018). The method
simultaneously mapped the viral and host transcriptomes in the
same cell, and could be applicable to a wide range of viruses with
polyadenylated transcriptomes, including both negative-sense
single-stranded RNA viruses (influenza, Ebola, measles) and
double-stranded DNA viruses (herpes viruses, adenoviruses, pox
viruses). The main advantage of implementing single-cell
technology in this study was the discovery of novel specific
markers that distinguish influenza-infected cells. Overall, virology
studies at the single-cell level demonstrate that the description of a
population of infected cells based on the behaviour of a single cell
allows for better qualitative and quantitative examination of an
infection progress. Single-cell omics have great potential in
deciphering virus biology and virus-host cell interactions, and
are a powerful tool in virology that should be applied more often
in the future.
In malaria biology, a number of persistent questions could benefit

from a single-cell level investigation. At the Sanger Institute,
scRNA-seq is currently used to understand the transcriptional
diversity across the full life cycle of the malaria parasites under
different disease settings (Reid et al., 2018). The Malaria Cell Atlas
(MCA, https://www.sanger.ac.uk/science/tools/mca) has been
generated as a part of an initiative aiming to eradicate malaria.
This resource provides information about transcriptomes of
hundreds of Plasmodium isolates. In-depth transcriptional analysis
of the parasite at the single-cell level might provide useful
information in terms of drug-targeting strategies. Nearly half of
the world population is at risk of developing malaria, and
individuals can be infected with multiple strains of the parasite.
Transcriptional variation in parasites is associated with critical
disease phenotypes, including red blood cell invasion and immune
evasion (Reid et al., 2018). Plasmodium species have a complex life
cycle with many different developmental stages. Although the
parasite’s life-cycle stages have been extensively investigated at the
transcriptional level, these studies were until recently conducted
using only the bulk-cell-population approach (Otto et al., 2014;
López-Barragán et al., 2011; Lasonder et al., 2016). Insight into
individual cells may uncover distinct transcriptional signatures
responsible for pathogenesis. Recently, Reid et al. used scRNA-seq
analysis to delineate transcriptional variation of human and
rodent malaria parasites by applying this sequencing method to

FACS-sorted, parasite-infected red blood cells (Reid et al., 2018).
The researchers optimised the standard Smart-seq2 protocol
(Picelli et al., 2013) to improve the percentage of genes mapped
to the parasite genome. This enabled not only the identification
of different cell types, but also the exploration of the functional
variation among individual cells. Moreover, single-cell gene
expression analysis performed in this study revealed abrupt
changes in Plasmodium gene expression during the asexual cycle,
in contrast to previously published results of the bulk-level
experiments that showed a smooth transition (Bozdech et al.,
2003; Hoo et al., 2016). As the asexual replication cycle of
Plasmodium is linked to pathogenesis, these results are important
for improved understanding of the infection progress and for the
development of potential therapies. In summary, the application
of single-cell transcriptome profiling to study malaria infection
allows the discovery of the genes underlying important disease
phenotypes.

Animal bodies host a diverse collection of microorganisms that
comprise a complex microbiome, which plays an important role in
both homeostasis and disease (Tolonen and Xavier, 2017). Bacterial
populations consist of a broad spectrum of individual cells, making
them the ideal targets to be studied using single-cell omic
approaches. Specifically, single-cell genomics hold the potential
to decipher complex interactions between immune cells and the
microbiota. Although bacteriologists have already been
implementing single-cell imaging to observe cell growth and
division, the development of single-cell omics enables the detailed
profiling of bacterial RNA, DNA, protein and metabolites.
Advances in the sequencing of single microbial cells could help
uncover the functional roles of the human microbiome members.
Insight into the interactions of immune cells with the microbiome
might delineate their importance in health, which is especially
relevant for the many chronic diseases that are associated with
changes in microbiota. Recently, Gury-BenAri et al. applied single-
cell technologies to study the effect of a perturbed microbiome on
murine intestinal innate lymphoid cells (ILCs) (Gury-BenAri et al.,
2016). Using germ-free or antibiotic-treated mice, the authors
showed significant changes in the ILC transcriptome caused by a
perturbed microbiome, with a global acquisition of genomic
elements characteristic of type 3 ILCs that are associated with
inflammatory bowel disease. This discovery highlights the
importance of ILC-microbiota crosstalk in creating a healthy
intestinal microenvironment and preventing auto-inflammatory
disorders. In addition to uncovering the pathogenesis of chronic
diseases, analysis of individual genomes from microbiota can also
greatly benefit other fields, such as epidemiology, by tracing the
emergence of pathogenic and drug-resistant strains.

The application of single-cell gene expression analysis can also
highlight differences in the responses of individual immune cells to
pathogen heterogeneity. Avraham et al. developed an experimental
setup that combined scRNA-seq with fluorescent markers in a
mouse model to study a Salmonella infection (Avraham et al.,
2015). Fluorescent labelling allowed the authors to distinguish
between uninfected macrophages, infected macrophages containing
dead bacteria and infected ones containing live bacteria. Subsequent
scRNA-seq analysis of different macrophage populations identified
sets of genes related to the infection phenotypes. Similar results
were obtained by Saliba et al., who also used scRNA-seq to show
how Salmonella infection influences the polarisation of murine
macrophages (Saliba et al., 2016). The results revealed that
macrophages containing non-growing bacteria displayed pro-
inflammatory M1 polarisation, whereas those infected with
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growing bacteria preferentially differentiated into a population of
anti-inflammatory M2 macrophages.
In infection models, single-cell omics can provide information on

the heterogeneity of host-pathogen interactions (Fig. 1), revealing
the dynamics of an infection and the emergence of drug resistance.
Dissecting the infection progress with single-cell precision can lead
to the discovery of druggable targets at the early stages of infection,
which can therefore result in more effective treatments. Moreover,
studying the interaction of human microbiota with the immune
cells at the single-cell level can provide valuable insight into how
cell function is influenced by a microbiome, and how it is perturbed
in a pathological state (Tolonen and Xavier, 2017). Therefore,
single-cell omic technologies are emerging as a powerful tool
in microbiology. However, some challenges remain. For example,
the small size of pathogenic microorganisms translates into lower
nucleic acid and protein content compared with that of eukaryotic
cells, while the high GC content of microbial genomes hinders
their sequencing. Therefore, the successful application of single-cell
technologies in microbiology requires constant development
of experimental protocols tailored to microbial material
(Blainey, 2013).

Cancer: dissecting tumour heterogeneity
The application of single-cell omics could answer several major
questions in cancer biology. These include the identification of
distinct molecular patterns involved in disease progression and
relapse, and the mechanisms of tumour immune evasion (Fig. 1).
Intratumour heterogeneity is well documented, and has been linked
to clonal evolution, rare cell populations and dynamic cell states
(Levitin et al., 2018). The tumour microenvironment consists of
a heterogeneous population of cells including malignant, stromal
and infiltrating immune cells (Bussard et al., 2016). Therefore,
tumour phenotyping at the bulk level does not provide sufficient
information on the molecular profile of tumour cells. Indeed, single-
cell technologies have been successfully applied in cancer biology
to analyse intratumour heterogeneity at multiple molecular levels,
including the genome, transcriptome and proteome, opening
opportunities for in-depth determination of key molecular tumour
properties that could influence the clinical outcome.
With the view of designing optimised strategies for

immunotherapy, Lavin et al. recently deciphered the immune
signature of lung adenocarcinoma at the single-cell level. A
combination of a barcoding method and mass cytometry allowed
for simultaneous single-cell analysis of the tumour, the non-
involved lung tissue and the peripheral blood. This approach
revealed a unique tumour-immune signature and provided a
detailed immune cell atlas of the human lung (Lavin et al., 2017).
Comparative analysis of the tumour and the normal lung delineated
changes associated with tumour progression, emphasising the
relevance of such analysis for understanding the tumour
microenvironment (Lambrechts et al., 2018). Performing single-
cell analysis on multiple tissues not only provided a detailed cellular
map of lung adenocarcinoma but also identified tumour-specific
changes. Identification of such changes will help to develop
immunotherapy strategies tailored to restore a normal immune
signature.
Single-cell omic approaches are also a powerful tool to detect and

characterise rare populations of tumour cells, such as circulating
tumour cells (CTCs; Box 1) or CSCs. Being quiescent, CSCs are
resistant to standard chemotherapy and can sustain the long-term
growth of cancer (Giustacchini et al., 2017). The genetic diversity of
a tumour is linked to the diversity of its stem cell population

(Lawson et al., 2015). Lawson et al. applied single-cell
transcriptomics to study heterogeneity within a stem cell pool in
breast carcinoma (Lawson et al., 2015). They generated the
expression signature of normal breast epithelium and used it as a
reference to resolve differentiation pathways in metastatic cells
obtained from patient-derived mice xenografts. Their study revealed
that metastatic cells from low-burden tissues – those with a low
number of cancer cells – are distinct from the primary tumour cells.
By contrast, cells from high-burden tissues – those containing a
high number of cancer cells – were more similar to the primary
tumour cells. The single-cell gene expression analysis indicated
that metastatic cells from breast cancer have a stem-cell-like
transcriptional signature. They can give rise to differentiated
progeny once seeded within a distant tissue. The single-cell
approach uncovered the diversity of differentiation and gene
expression at the metastatic stage, which could potentially aid in
the design of drugs that target metastatic disease. Furthermore,
Giustacchini et al. looked at the molecular signature of stem cells in
chronic myeloid leukaemia (CLM), applying scRNA-seq to analyse
the CSCs (Giustacchini et al., 2017). The CSC compartment in
CLM is well established, and the persistence of these cells during
therapy poses a continuous challenge. CLM-derived CSCs are
characterised by the presence of a somatic mutation – a BCR-ABL
fusion gene. As scRNA-seq lacks the sensitivity to reliably detect
somatic mutations, Giustacchini and co-workers modified the
standard Smart-seq2 method (Picelli et al., 2013) to combine a
highly sensitive mutation detection with transcriptome analysis in
the same cell. This new technique allowed them to selectively
analyse aberrant CSC gene expression at the time of diagnosis, as
well as during treatment-mediated remission. The data showed that
treatment-resistant CSCs were transcriptionally different from
normal haematopoietic stem cells, highlighting the genes that
could be selectively targeted. This study illustrated how single-cell
omic analysis can identify a population of therapy-resistant CSCs
and provide opportunities for the development of targeted therapies.

The other rare population of cancer cells, CTCs, is also highly
suited for single-cell analysis. In-depth analysis of CTCs has
important clinical implications, as serial sampling of blood
containing CTCs allows the monitoring of cancer progression
over time (Lapin et al., 2017; Ramsköld et al., 2012). The work of
Miyamoto and colleagues showed that studying the transcriptomes
of single CTCs in prostate cancer allows researchers to monitor the
acquisition of genetic changes resulting in acquired therapy
resistance (Miyamoto et al., 2015). This is a great example of how
therapy can benefit from the application of single-cell technologies.
Ideally, further development of these techniques in monitoring the
CTC pool will contribute to improved understanding and
management of drug resistance. It will allow patients to be
switched to a different drug before resistance arises. Several other
studies also utilised single-cell transcriptomics to examine CTCs.
For instance, Ramsköld et al. developed a Smart-seq protocol to
characterise melanoma-derived CTCs (Ramsköld et al., 2012),
whereas Lapin et al. performed mRNA profiling of CTCs from
pancreatic cancer patients using single-cell multiplex reverse
transcription quantitative PCR (Lapin et al., 2017). Both studies
revealed distinct gene expression signatures within CTC pools, and
again confirmed that single-cell data can capture the true diversity of
cell populations that bulk-level analyses cannot.

The main cause of mortality among cancer patients is metastasis
(Mehlen and Puisieux, 2006). A better understanding of the
mechanisms underlying cancer metastasis connected with
disseminated tumour cells (DTCs) can lead to more effective
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treatments. Currently, there are twomodels explaining the origins of
DTCs during tumour evolution: parallel and linear (Klein, 2009).
The parallel model suggests that cancer cells disseminate from the
primary tumour early, whereas, according to the linear model, DTCs
leave the primary tumour site sequentially. Therefore, depending on
which model is applied, DTCs should have either profoundly
different or similar genomes compared with the primary tumour,
respectively. Single-cell genomics offers the possibility to trace the
origin of DTCs and to evaluate the proposed cancer progression
models. Demeulemeester et al. used this method to study DTCs
from breast carcinoma patients (Demeulemeester et al., 2016). The
researchers sequenced genomic DNA from single DTCs isolated
from bone marrow aspirates. Bulk primary tumours and lymph node
samples were subjected to single-nucleotide polymorphism array
profiling and whole-genome sequencing. The genomic profiles of
single DTCs were correlated with the profile of bulk samples to trace
the origin of DTCs. The results showed that mutation profiles of
DTCs and of the primary tumour were similar, suggesting that breast
cancer cells either acquire the ability to disseminate from the
primary site late in their evolution or that continuous seeding and
replacement occurs. In other words, early disseminating tumour
cells are replaced by late ones as they compete for the bone marrow
niche. This study showed that single-cell sequencing is a powerful
tool to better understand the origin of metastasis.
Owing to their precision, single-cell omics can also be utilised

when choosing the appropriate treatment regimen for cancer
patients. Kim and colleagues applied scRNA-seq analysis to
optimise the treatment strategy for metastatic renal cell carcinoma
patients (Kim et al., 2016). They generated patient-derived mouse
xenografts from primary tumours or lung metastases. Single-cell
transcriptome analysis revealed that cells from the metastasis
xenografts had a different drug sensitivity signature than cells from
the primary tumour xenografts. The study showed that molecular
targeted therapies could be designed based on prediction signatures
obtained from scRNA-seq data. Mitra et al. also applied single-cell
transcriptomics to elucidate the drug sensitivity/resistance profile of
myeloma (Box 1) (Mitra et al., 2016). The researchers demonstrated
that the single-cell gene expression signature can predict the
sensitivity or resistance to anticancer drugs. Moreover, they also
used a machine-learning approach to select the most relevant
genes necessary for predicting the drug response in individual cells.
These studies highlight that single-cell omics can facilitate the
individualised clinical decision-making process.
Intratumour heterogeneity is the biggest challenge to overcome in

the design of targeted cancer therapies. High-throughput single-cell
approaches can address this challenge by providing the precision to
dissect the heterogeneity within tumour cell populations. Therefore,
we expect that these technologies will greatly facilitate the
development of targeted cancer therapies in the future. Single-cell
transcriptomic profiling can provide information about the
expression pattern of potential drug targets, indicating, for instance,
whether they are expressed ubiquitously or present only in a specific
population of cells. Therefore, single-cell omics will contribute to
choosing the right combination of targeted therapies, and enable
more accurate patient enrolment in clinical trials (Levitin et al., 2018).
Overall, single-cell omics is a powerful tool that improves our

understanding of tumour invasion, metastasis, immune evasion and
resistance to therapy (Fig. 1). The application of these technologies
to clinical research can improve the early detection and monitoring
of cancer, and set guidelines for targeted therapies.
Solid tumours contain multiple microenvironments, and the

crosstalk between malignant cells and those microenvironments

could influence the response to therapy. The current drawback of
single-cell sequencing is the requirement for cellular dissociation,
which results in the loss of spatial information. Spatial
transcriptomics (Box 1) can address this drawback. It provides
information about gene expression data together with visualisation
of mRNA distribution within tissue sections. Combining this
information allows for novel types of bioinformatics analyses,
valuable in research and diagnostics (Stahl et al., 2016). New
methods are being developed, such as RNAscope (Box 1) (Wang
et al., 2012), multiplexed error-robust fluorescence in situ
hybridisation (MERFISH; Box 1) (Chen et al., 2015; Moffitt
et al., 2016) or quantitative hybridisation chain reaction (qHCR;
Box 1) (Trivedi et al., 2018), which allow for in situ analysis of
biomarkers in the histopathological context.

Brain disorders: obtaining single-cell details
The human brain consists of ∼100 billion neurons and large
populations of non-neuronal cells (Lake et al., 2017). Even in a
single brain region, there is significant variation in morphology,
connectivity and electrophysical properties between neurons (Lake
et al., 2017). Identification of the cell types involved in disease
pathogenesis is extremely challenging in a highly heterogeneous
tissue like the brain. Therefore, single-cell omic methods have been
used to create a detailed map of the brain to trace the origins of cells
implicated in the pathogenesis of neuronal diseases (Fig. 1).

Recently, researchers successfully applied CyTOF to better
understand the background of narcolepsy (Box 1) (Hartmann et al.,
2016). Hartman et al. analysed immune cell populations from the
blood of narcolepsy patients or healthy control subjects. Application
of CyTOF identified major immune cell populations, determined
their activation status, and, most importantly, analysed their
chemokine receptor and cytokine expression patterns.
Furthermore, this single-cell-resolution study revealed numerous
immunological phenotypes associated with narcolepsy and
demonstrated the importance of further investigation of
lymphocyte populations and their effector mechanisms as
therapeutic targets in narcolepsy.

Single-cell omics can also uncover the differences between cell
populations in neurodegenerative and neuroinflammatory diseases.
For instance, Ajami et al. employed CyTOF to dissect the
heterogeneity of myeloid cell populations in mouse models of
multiple sclerosis (MS) as an example of neuroinflammatory
disease, and Huntington’s disease (HD) and amyotrophic lateral
sclerosis as examples of neurodegenerative diseases (Ajami et al.,
2018). The application of CyTOF enabled an in-depth analysis of
cell surface markers, signalling molecules and cytokine profiles of
myeloid cells in these diseases. The analysis revealed three different
myeloid populations that were characteristic of the central nervous
system and absent from peripheral blood. One of the populations
was highly enriched in all three pathological conditions compared
with healthy controls. Furthermore, analysis of signalling markers
showed that myeloid populations in HD lacked the inflammatory
signalling signatures present in the MS model. Single-cell insight
into the cytokine profiles of all three models revealed that even
though myeloid populations across the models were homogenous in
terms of cell surface markers, they contained heterogeneous
functional subsets, depending on disease aetiology. In the
neuroinflammatory disease model, cells were producing multiple
cytokines simultaneously, while myeloid cell populations in the
neurodegenerative disease models could be distinguished based on
the production of a single type of cytokine. This analysis suggested
that, although cytokine levels are a general marker of immune
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response, they should be examined in detail in terms of whether
single or multiple cytokines are produced within a cell
subpopulation. In summary, Ajami et al. illustrated the power of
single-cell proteomics in understanding the heterogeneity of
myeloid cells in neuropathologies, and the differences between
neuroinflammation and neurodegeneration (Ajami et al., 2018).
Single-cell approaches have the potential to further characterise
neuroinflammatory and neurodegenerative conditions in the context
of druggable targets. As the study was performed in mouse
models, the next step would be to extrapolate this approach to
human samples.
In another example of successful application of single-cell omics

to study human patient samples, Lodato et al. examined somatic
SNVs (sSNVs) at the single-neuron level during ageing and
neurodegeneration (Lodato et al., 2018). Although previous
genomic studies on bulk brain DNA showed the accumulation of
somatic mutations with ageing, they could not determine whether
mutation occurs specifically in mature neurons. As somatic
mutations in postmitotic neurons are cell specific, they can only
be comprehensively analysed by comparing the genomes of
individual cells. The study demonstrated that sSNVs in neurons
accumulate slowly with age. Extending the knowledge of the
accumulation of mutations across brain regions will greatly increase
our understanding of age-related cognitive decline.
In a recent study, Liao et al. applied single-cell technology to

better elucidate the pathogenesis of Alzheimer’s disease (AD). The
authors developed a method to study the secretome of human
induced pluripotent stem cell-derived neural cells (Liao et al.,
2016). The method was subsequently applied to measure the levels
of amyloid beta (Aβ; Box 1) and soluble amyloid precursor protein
alpha (sAPPα; Box 1), which are implicated in AD pathogenesis.
Examination of Aβ and sAPPα levels from single cells identified
the complex biology of Aβ generation. The study revealed
heterogeneity in the secretion levels of Aβ and sAPPα in a
homogenous population of cells. Critically, single-cell analysis
showed that not only neurons, but also non-neuronal cells, secrete
high levels of Aβ. This discovery supported the related recent
findings in mouse models of AD (Veeraraghavalu et al., 2014) and
shed new light on AD pathogenesis.
Owing to the high level of complexity and heterogeneity of the

neurons involved in neurological disorders, developing treatments
is truly challenging (Fig. 1). Single-cell omics are promising tools to
improve our understanding of the pathological pathways involved
in disease initiation and progression that can facilitate the
development of effective therapies. So far, single-cell sequencing
was successfully applied to several neurological disorders.
However, further development of single-cell techniques will most
likely result in even broader application within this field. Recently,
Lake et al. successfully combined single-nucleus droplet-based
sequencing and transposome hypersensitivity side sequencing
(Box 1) to study the transcriptome and DNA accessibility profiles
of single cells from different regions of the human brain (Lake et al.,
2017). This innovative research highlights the power of multiomics
in detailed mapping of heterogeneous cell populations to decipher
complex tissues like the brain.

Current limitations and future directions
In recent years, single-cell omics have opened new areas of research
and helped to answer biological questions with unprecedented
resolution. Despite the rapid development of new technologies,
many limitations persist. One of them is the gene expression
changes induced by sample processing (van den Brink et al., 2017).

Currently, new protocols that minimise dissociation-induced gene
expression changes are being developed (Lambrechts et al., 2018).
Moreover, generation of single-cell suspensions that are
representative of the initial cell population of interest is still
challenging, as automated capturing methods usually sample only a
fraction of cells (Svensson et al., 2018). In the progress towards the
implementation of single-cell multiomics, sensitivity remains the
main challenge. Methods that rely on genomic and epigenomic
analyses are often hampered by allelic and locus dropouts, and base-
level events are regularly not detected in a consistent way across the
genome (Macaulay et al., 2017). The majority of scRNA-seq
platforms are only able to capture the poly(A) fraction of RNA in a
cell, thus missing the variety of microRNAs, long non-coding
RNA and histone RNAs that have important regulatory functions.
Additionally, only ∼10-20% of RNA is reverse transcribed, which
generates technical noise (Kolodziejczyk et al., 2015). New
methods have recently been proposed to complement existing
single-cell transcriptomic techniques and show promise to fully
capture the total RNA content of a cell (Faridani et al., 2016;
Hayashi et al., 2018).

The loss of spatial contextualisation in the analysis remains one of
the main drawbacks of single-cell omic approaches. Information on
the pre-capture localisation of the analysed cells, pivotal for research
as well as for diagnostic purposes, is lost when dissociating the
tissue into individual cells. Several laboratories have taken up the
challenge of developing methods that combine single-cell
transcriptomics with spatial characterisation. A promising method,
termed ‘spatial transcriptomics’, has been developed based on the
superimposition of histological slides on arrays of barcoded reverse
transcription primers, although this technique is currently unable to
attain single-cell resolution (Stahl et al., 2016). The traditional
in situ hybridisation (Box 1) approach has recently been modified to
reach the single-cell level and simultaneously detect the expression
of several genes. Multiplex single-molecule fluorescence in situ
hybridisation techniques, such as MERFISH, rely on combinatorial
labelling and sequential visualisation to analyse the expression of
thousands of genes (Chen et al., 2015; Moffitt et al., 2016). An
alternative approach, qHCR, achieves accurate quantification of
gene expression with subcellular resolution (Trivedi et al., 2018).
Further progress of spatially defined single-cell transcriptome
analysis will have important consequences on research and
diagnostics. Such analysis is especially relevant for cancer
biology, whereby the crosstalk between malignant cells and the
microenvironment can influence disease progression and response
to therapy.

Understanding the mechanisms that underlie diseases at the
single-cell level requires constant development of both
experimental and computational methods. Analysis of single-cell
data is a challenging and multidimensional task. Complexity, noise
and unique features of cellular tissues make it difficult to extract
meaningful biological information from the single-cell database.
Therefore, we can drive valid conclusions about biological
heterogeneity based on the single-cell data only if technical
variability can be determined, minimised and excluded. This
requires constant development of statistical and computational
methods. Currently, there is no consensus on the computational
methods to be used for the analysis of single-cell omics datasets, and
accounting for the technical variations associated with such datasets
remains challenging (Stegle et al., 2015).

The next step of the single-cell revolution is to bring it into
clinical practice. Single-cell transcriptomics, in particular, has
allowed large-scale efforts aimed at the generation of atlases of
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tissues, organs and entire organisms, including an unbiased
catalogue and characterisation of all the individual cells contained
in an anatomical compartment. In particular, the Human Cell Atlas
currently represents the most ambitious effort, with its main goal to
provide a reference map of the healthy and diseased tissues of the
human body (Regev et al., 2017; Rozenblatt-Rosen et al., 2017).
Once the Human Cell Atlas is generated, it will be possible to
compare any diseased tissues with the standard reference, which
will provide new tools for diagnostics and personalised medicine
approaches.
Overall, rapidly developing single-cell technologies will enable

more complex profiling of cells in human health and disease.
The combined information about transcriptional state, epigenetic
modification and cellular ancestry will drive the progress of
personalised medicine and better targeted therapies (Fig. 1).
Diagnostic assays will become more powerful once they progress
from crude bulk methods to single-cell precision. However, the
main challenges that still need to be overcome in order to take
single-cell techniques into the diagnostic field include a relatively
long analysis time and high costs. Only with the development
of new experimental and computational tools will it become
possible to implement the single-cell omic technologies into
clinical practice.
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Bassez, A., Decaluwé, H., Pircher, A., Van den Eynde, K. et al. (2018).
Phenotypemolding of stromal cells in the lung tumor microenvironment.Nat. Med.
24, 1277-1289.

Lapin, M., Tjensvoll, K., Oltedal, S., Javle, M., Smaaland, R., Gilje, B. and
Nordgård, O. (2017). Single-cell mRNA profiling reveals transcriptional
heterogeneity among pancreatic circulating tumour cells. BMC Cancer 17, 390.

Lasonder, E., Rijpma, S. R., van Schaijk, B. C. L., Hoeijmakers, W. A. M.,
Kensche, P. R., Gresnigt, M. S., Italiaander, A., Vos, M. W., Woestenenk, R.,
Bousema, T. et al. (2016). Integrated transcriptomic and proteomic analyses of
P. falciparum gametocytes: molecular insight into sex-specific processes and
translational repression. Nucleic Acids Res. 44, 6087-6101.

Lavin, Y., Kobayashi, S., Leader, A., Amir, E.-D., Elefant, N., Bigenwald, C.,
Remark, R., Sweeney, R., Becker, C. D., Levine, J. H. et al. (2017). Innate
immune landscape in early lung adenocarcinoma by paired single-cell analyses.
Cell 169, 750-765.e17.

Lawson, D. A., Bhakta, N. R., Kessenbrock, K., Prummel, K. D., Yu, Y., Takai, K.,
Zhou, A., Eyob, H., Balakrishnan, S., Wang, C.-Y. et al. (2015). Single-cell
analysis reveals a stem-cell program in human metastatic breast cancer cells.
Nature 526, 131-135.

Levitin, H. M., Yuan, J. and Sims, P. A. (2018). Single-cell transcriptomic analysis
of tumor heterogeneity. Trends Cancer 4, 264-268.

8

REVIEW Disease Models & Mechanisms (2018) 11, dmm036525. doi:10.1242/dmm.036525

D
is
ea

se
M
o
d
el
s
&
M
ec
h
an

is
m
s

http://dx.doi.org/10.1038/s41593-018-0100-x
http://dx.doi.org/10.1038/s41593-018-0100-x
http://dx.doi.org/10.1038/s41593-018-0100-x
http://dx.doi.org/10.1038/s41593-018-0100-x
http://dx.doi.org/10.1128/JVI.02190-15
http://dx.doi.org/10.1128/JVI.02190-15
http://dx.doi.org/10.1128/JVI.02190-15
http://dx.doi.org/10.1016/j.cell.2010.04.033
http://dx.doi.org/10.1016/j.cell.2010.04.033
http://dx.doi.org/10.1038/s41467-017-02305-6
http://dx.doi.org/10.1038/s41467-017-02305-6
http://dx.doi.org/10.1038/s41467-017-02305-6
http://dx.doi.org/10.1016/j.cell.2015.08.027
http://dx.doi.org/10.1016/j.cell.2015.08.027
http://dx.doi.org/10.1016/j.cell.2015.08.027
http://dx.doi.org/10.1016/j.cell.2015.08.027
http://dx.doi.org/10.1016/j.tcb.2014.08.010
http://dx.doi.org/10.1016/j.tcb.2014.08.010
http://dx.doi.org/10.1111/1574-6976.12015
http://dx.doi.org/10.1111/1574-6976.12015
http://dx.doi.org/10.1371/journal.pbio.0000005
http://dx.doi.org/10.1371/journal.pbio.0000005
http://dx.doi.org/10.1371/journal.pbio.0000005
http://dx.doi.org/10.1186/s13058-016-0740-2
http://dx.doi.org/10.1186/s13058-016-0740-2
http://dx.doi.org/10.1186/s13058-016-0740-2
http://dx.doi.org/10.1126/science.aaa6090
http://dx.doi.org/10.1126/science.aaa6090
http://dx.doi.org/10.1126/science.aaa6090
http://dx.doi.org/10.1186/s13059-016-0944-x
http://dx.doi.org/10.1186/s13059-016-0944-x
http://dx.doi.org/10.1186/s13059-016-0944-x
http://dx.doi.org/10.1126/science.aab1601
http://dx.doi.org/10.1126/science.aab1601
http://dx.doi.org/10.1126/science.aab1601
http://dx.doi.org/10.1126/science.aab1601
http://dx.doi.org/10.1186/s13059-016-1109-7
http://dx.doi.org/10.1186/s13059-016-1109-7
http://dx.doi.org/10.1186/s13059-016-1109-7
http://dx.doi.org/10.1186/s13059-016-1109-7
http://dx.doi.org/10.1038/nbt.3129
http://dx.doi.org/10.1038/nbt.3129
http://dx.doi.org/10.1038/nbt.3129
http://dx.doi.org/10.1038/nbt.3701
http://dx.doi.org/10.1038/nbt.3701
http://dx.doi.org/10.1038/nbt.3701
http://dx.doi.org/10.1086/319235
http://dx.doi.org/10.1086/319235
http://dx.doi.org/10.1371/journal.pcbi.0010050
http://dx.doi.org/10.1371/journal.pcbi.0010050
http://dx.doi.org/10.1371/journal.pcbi.0010050
http://dx.doi.org/10.1038/nrg.2015.16
http://dx.doi.org/10.1038/nrg.2015.16
http://dx.doi.org/10.1038/nm.4336
http://dx.doi.org/10.1038/nm.4336
http://dx.doi.org/10.1038/nm.4336
http://dx.doi.org/10.1038/nm.4336
http://dx.doi.org/10.1101/gr.161679.113
http://dx.doi.org/10.1101/gr.161679.113
http://dx.doi.org/10.1101/gr.161679.113
http://dx.doi.org/10.1016/j.celrep.2017.10.051
http://dx.doi.org/10.1016/j.celrep.2017.10.051
http://dx.doi.org/10.1016/j.celrep.2017.10.051
http://dx.doi.org/10.1016/j.cell.2016.07.043
http://dx.doi.org/10.1016/j.cell.2016.07.043
http://dx.doi.org/10.1016/j.cell.2016.07.043
http://dx.doi.org/10.1016/j.cell.2016.07.043
http://dx.doi.org/10.1084/jem.20160897
http://dx.doi.org/10.1084/jem.20160897
http://dx.doi.org/10.1084/jem.20160897
http://dx.doi.org/10.1084/jem.20160897
http://dx.doi.org/10.1038/s41467-018-02866-0
http://dx.doi.org/10.1038/s41467-018-02866-0
http://dx.doi.org/10.1038/s41467-018-02866-0
http://dx.doi.org/10.1016/j.ebiom.2016.04.011
http://dx.doi.org/10.1016/j.ebiom.2016.04.011
http://dx.doi.org/10.1016/j.ebiom.2016.04.011
http://dx.doi.org/10.1186/s13059-016-0945-9
http://dx.doi.org/10.1186/s13059-016-0945-9
http://dx.doi.org/10.1186/s13059-016-0945-9
http://dx.doi.org/10.1186/s13059-016-0945-9
http://dx.doi.org/10.1038/nrc2627
http://dx.doi.org/10.1038/nrc2627
http://dx.doi.org/10.1101/gr.198937.115
http://dx.doi.org/10.1101/gr.198937.115
http://dx.doi.org/10.1101/gr.198937.115
http://dx.doi.org/10.1016/j.molcel.2015.04.005
http://dx.doi.org/10.1016/j.molcel.2015.04.005
http://dx.doi.org/10.1016/j.molcel.2015.04.005
http://dx.doi.org/10.1038/nbt.4038
http://dx.doi.org/10.1038/nbt.4038
http://dx.doi.org/10.1038/nbt.4038
http://dx.doi.org/10.1038/nbt.4038
http://dx.doi.org/10.1038/s41591-018-0096-5
http://dx.doi.org/10.1038/s41591-018-0096-5
http://dx.doi.org/10.1038/s41591-018-0096-5
http://dx.doi.org/10.1038/s41591-018-0096-5
http://dx.doi.org/10.1186/s12885-017-3385-3
http://dx.doi.org/10.1186/s12885-017-3385-3
http://dx.doi.org/10.1186/s12885-017-3385-3
http://dx.doi.org/10.1093/nar/gkw536
http://dx.doi.org/10.1093/nar/gkw536
http://dx.doi.org/10.1093/nar/gkw536
http://dx.doi.org/10.1093/nar/gkw536
http://dx.doi.org/10.1093/nar/gkw536
http://dx.doi.org/10.1016/j.cell.2017.04.014
http://dx.doi.org/10.1016/j.cell.2017.04.014
http://dx.doi.org/10.1016/j.cell.2017.04.014
http://dx.doi.org/10.1016/j.cell.2017.04.014
http://dx.doi.org/10.1038/nature15260
http://dx.doi.org/10.1038/nature15260
http://dx.doi.org/10.1038/nature15260
http://dx.doi.org/10.1038/nature15260
http://dx.doi.org/10.1016/j.trecan.2018.02.003
http://dx.doi.org/10.1016/j.trecan.2018.02.003


Liao, M.-C., Muratore, C. R., Gierahn, T. M., Sullivan, S. E., Srikanth, P., De
Jager, P. L., Love, J. C. and Young-Pearse, T. L. (2016). Single-cell detection of
secreted Aβ and sAPPα from human IPSC-derived neurons and astrocytes.
J. Neurosci. 36, 1730-1746.

Liu, J., Adhav, R. and Xu, X. (2017). Current progresses of single Cell DNA
sequencing in breast cancer research. Int. J. Biol. Sci. 13, 949-960.

Lodato, M. A.,Woodworth, M. B., Lee, S., Evrony, G. D., Mehta, B. K., Karger, A.,
Lee, S., Chittenden, T.W., D’Gama, A.M., Cai, X. et al. (2015). Somaticmutation
in single human neurons tracks developmental and transcriptional history.
Science 350, 94-98.

Lodato, M. A., Rodin, R. E., Bohrson, C. L., Coulter, M. E., Barton, A. R., Kwon,
M., Sherman, M. A., Vitzthum, C. M., Luquette, L. J., Yandava, C. N. et al.
(2018). Aging and neurodegeneration are associated with increased mutations in
single human neurons. Science 359, 555-559.
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