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The central role of DNA damage and repair in CAG repeat
diseases
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ABSTRACT
Diseases such as Huntington’s disease and certain spinocerebellar
ataxias are caused by the expansion of genomic cytosine-adenine-
guanine (CAG) trinucleotide repeats beyond a specific threshold.
These diseases are all characterised by neurological symptoms and
central neurodegeneration, but our understanding of how expanded
repeats drive neuronal loss is incomplete. Recent human genetic
evidence implicates DNA repair pathways, especially mismatch
repair, in modifying the onset and progression of CAG repeat
diseases. Repair pathways might operate directly on repeat
sequences by licensing or inhibiting repeat expansion in neurons.
Alternatively, or in addition, because many of the genes containing
pathogenic CAG repeats encode proteins that themselves have roles
in the DNA damage response, it is possible that repeat expansions
impair specific DNA repair pathways. DNA damage could then accrue
in neurons, leading to further expansion at repeat loci, thus setting up
a vicious cycle of pathology. In this review, we consider DNA damage
and repair pathways in postmitotic neurons in the context of disease-
causing CAG repeats. Investigating and understanding these
pathways, which are clearly relevant in promoting and ameliorating
disease in humans, is a research priority, as they are known to modify
disease and therefore constitute prevalidated drug targets.

KEY WORDS: CAG repeat, DNA damage, DNA repair, Huntington’s
disease, Spinocerebellar ataxia

Introduction
Expanded cytosine-adenine-guanine (CAG) trinucleotide repeats in
the exons of certain genes can induce neurodegeneration in the
central nervous system (CNS). Diseases caused by expanded CAG
repeats include Huntington’s disease (HD), which has a prevalence
of approximately 1 in 8000 in populations of European descent
(Evans et al., 2013; Fisher and Hayden, 2014), and various
spinocerebellar ataxias (SCAs), which are individually very rare but
have a combined prevalence of ∼1 in 40,000 in European/Asian
populations (Ruano et al., 2014). These dominantly inherited
diseases are all characterised by slow, progressive neuronal loss over
10-20 years, leading to worsening disability and, eventually, death.
Specific clinical manifestations depend on the genes and cell types
affected by the repeat expansion but, despite the phenotypic
variation between these diseases, a common underlying molecular

pathology seems likely. In support of this hypothesis, recent human
genetic data suggest that DNA repair pathways are central to the
pathogenesis of CAG repeat diseases (see Glossary, Box 1)
(Bettencourt et al., 2016; GeM-HD Consortium, 2015). In this
review, we consider how DNA damage and repair pathways could
potentially mediate CAG repeat-driven pathology in CNS neurons.
A better understanding of these cellular mechanisms could identify
novel drug targets, an urgent requirement in the field given that there
are currently no disease-modifying treatments for any CAG repeat
disorder.

DNA damage and repair in the CNS
DNA is continually damaged and repaired in all living cells.
Intricate DNA repair mechanisms have evolved in parallel with
increasing genome complexity in order to preserve genetic
information (O’Brien, 2006). However, inaccurate repair can be
mutagenic, while failed repair can threaten the integrity of the
genome. Different cells sustain different types of DNA damage, and
various overlapping mechanisms within the overarching DNA
damage response (DDR; see Glossary, Box 1) are required for
effective repairs (Jackson and Bartek, 2009; Pearl et al., 2015). The
adult postmitotic neurons that degenerate in CAG repeat diseases
sustain and repair particular types of DNA damage, as we discuss
below.

DNA damage
It has been estimated that each mammalian cell sustains as many as
10,000 single-strand and 10-50 double-strand DNA breaks per day
(Madabhushi et al., 2014). Exogenous sources of DNA damage,
such as UV light, ionising radiation and chemical mutagens,
predominantly affect exposed and dividing cells, but in neurons, and
especially in neurons of the CNS, endogenous metabolic processes
are more relevant sources of DNA damage. The high oxygen
demands of the brain (20% of total body oxygen consumption, but
only 2% of body mass) expose its cells to numerous reactive oxygen
species (ROS; see Glossary, Box 1) produced by normal
mitochondrial respiration (Cooke et al., 2003), and further
oxidative damage can arise as a result of inflammation. Over 100
different types of DNA base damage have been identified as being
caused by ROS, the most abundant of which is 8-oxo-2′-
deoxyguanosine (8-oxo-dG). One study of human lymphocytes
found 8-oxo-dG at a steady state of ∼10,000 damaged bases per cell
nucleus (Ohno et al., 2006). This altered base can be premutagenic
in replicating cells and has inhibitory effects on transcription in
postmitotic neurons (Iyama and Wilson, 2013). In addition to ROS,
cellular metabolism generates endogenous alkylating compounds
(e.g. S-adenosyl methionine), lipid peroxidation products, and
reactive nitrogen and carbonyl species that can directly damage
DNA. DNA is also susceptible to hydrolysis, which can directly
cause base loss or deamination, particularly in single-stranded
regions. CAG repeats might be especially susceptible to damage as
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hydrolytic depurination (i.e. loss of A or G) and cytosine
deamination are frequent events (Lindahl, 1993).
In addition to pathological DNA damage, there is increasing

recognition of the role of physiological, ‘programmed’ DNA strand
breakage. For example, outside the CNS, the generation of antibody
and T cell receptor diversity depend on programmed double-strand

breaks, and their subsequent repair, as part of V(D)J recombination
(seeGlossary, Box 1) (Slean et al., 2008), andmeiotic crossing over is
initiated by SPO11-induced double-strand breaks (see Glossary,
Box 1) (Keeney et al., 2014). Topoisomerases, which can introduce
temporary single- or double-strand breaks in DNA to regulate
supercoiling (see Glossary, Box 1), are essential for the expression of

Box 1. Glossary

Autophagy: mechanism by which cells recycle macromolecules through lysosomes.

Base excision repair (BER): pathway that senses and repairs small, nondistorting base lesions in DNA (e.g. arising from oxidative damage). Two major
subpathways are known: short-patch (SP-BER) and long-patch (LP-BER) relating to the amount of gap-filling DNA repair synthesis required (Fig. 2).

CAG repeat disorder: disease caused by a number of repeated, consecutive CAG trinucleotide units in DNA over a threshold length.

Cockayne syndrome B protein (CSB): ATPase with multiple functions in DNA repair as well as roles in chromatin remodelling, transcription and
mitochondrial function. Mutations in CSB cause ∼75% of Cockayne syndrome, a disease of neurodevelopmental abnormalities, neurodegeneration and
premature ageing.

DNA damage response (DDR): network of overlapping pathways in cells involved with DNA damage signalling and repair, integrated with the cell cycle.
Encoded by >450 genes in humans.

Double-strand break repair (DSBR):mechanism for ensuring genomic integrity following double-strand DNA breakage. Homologous recombination and
nonhomologous end joining are the two main pathways (Fig. 1).

Geneticmodifier: genetic variant that is not directly causative for a disease, but can affect the phenotypewhen occurring together with the disease-causing
mutation.

Genome-wide association study (GWAS): unbiased, observational, pan-genome screen for common genetic variants associated with a particular
disease or trait.

Lynch syndrome: a cancer predisposition syndrome caused by mutations in mismatch repair genes such as MSH2 and MLH1. Mutation carriers are at
increased risk of colorectal and other cancers.

Mediumspiny neurons (MSNs): inhibitory GABA-ergic interneurons that make up >95%of striatal neurons in the human brain. First neurons to degenerate
in Huntington’s disease.

Mismatch repair (MMR): pathway that is canonically involved in strand-specific repair of mismatched base-pairs arising from DNA replication errors in
proliferating cells. Recent data indicate broader repair functions, including in nondividing cells such as neurons (Fig. 2).

MutL complex: protein dimer involved in mismatch processing downstream of MutS complex in the MMR pathway (Fig. 2).

MutS complex: protein dimer responsible for initial mismatch recognition in MMR. Two complexes with overlapping substrate specificities exist in
eukaryotes: MutSα (MSH2/MSH6) and MutSβ (MSH2/MSH3), the latter found predominantly in neurons (Fig. 2).

Nucleotideexcision repair (NER):aDNA repair pathway that senses and repairs bulky lesions (e.g. photoproducts fromUV irradiation) by removing and replacing
damaged nucleotides. Twomajor subpathways are known: global genomic (GG-NER), involved in pan-genomic DNA repair, and transcription-coupled (TC-NER),
involved in repair in actively transcribed genes. These subpathways differ in damage sensing, but share downstream repair processes (Fig. 2).

Poly(ADP-ribose) polymerases (PARP): family of nuclear enzymes that detect single-strand breaks in DNA and signal to downstream repair factors
through ADP ribosylation of target proteins.

Reactive oxygen species (ROS): byproducts of oxidative cellular metabolism that can react with, and damage, DNA and othermacromolecules. Examples
include superoxide radicals and hydrogen peroxide.

Repeat-associated non-ATG (RAN) translation: noncanonical mRNA translation initiated by tandem repeats rather than the ATG codon and leading to
toxic homopolymeric proteins in cells.

Single-strand break repair (SSBR): a pathway that senses and repairs breaks in one strand of the DNA double helix. Shares components with base
excision repair (Fig. 2).

SPO11: tyrosine recombinase that initiates recombination in meiosis I by inducing programmed double-strand breaks in DNA.

Synthetic lethality: interaction between two genes where deficiency of either alone is tolerated, but simultaneous deficiency of both is lethal to the cell.
Harnessed in screens for novel (cancer) therapeutics.

Topoisomerase: enzyme that regulates the supercoiling of DNA by cleavage and re-ligation reactions on one strand (Type I) or both strands (Type II) of the
double helix.

V(D)J recombination: amechanism of programmed DNA strand breakage and repair that occurs in maturing B cells and T cells to generate antibody and T
cell receptor diversity, respectively.
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long genes and are particularly important in the brain, where
expressed genes are longer than elsewhere in the body (Gabel et al.,
2015; King et al., 2013; Zylka et al., 2015). Recently, it has also been
shown that neuronal activity in cells and in animals can trigger
topoisomerase-induced double-strand DNA breaks in the promoters
of neuronal early-response genes (Ju et al., 2006; Madabhushi et al.,
2015; Suberbielle et al., 2013). These DNA breaks might
relax topological constraints and stimulate promoter activity.
Topoisomerase mutations can lead to various neurodevelopmental
and neurodegenerative conditions, highlighting the importance of
torsional regulation of DNA in brain function (King et al., 2013;
McKinnon, 2016).
Therefore, neuronal DNA strands are continually broken and

repaired in vivo. The tight regulation of DNA repair is crucial for
maintaining neuronal gene expression and function; indeed, many
Mendelian neurological diseases result directly from defects in the
DNA damage response (Madabhushi et al., 2014).

DNA repair
Unrepaired DNA damage can have profound consequences on cells.
For example, point mutations or chromosomal rearrangements can
lead to cancer in dividing cells, such as glia, and can induce cell
death in nondividing cells, such as CNS neurons. Moreover, lesions
or strand breaks can stall DNA and RNA polymerases, leading to
impaired replication or transcription, respectively, and potentially

triggering cell death or senescence (Hoeijmakers, 2009). Therefore,
an elaborate damage response has evolved to identify and repair
DNA damage in conjunction with cell cycle regulation. The DDR
involves >450 genes in humans, with subsets of these genes
deployed depending on the type of DNA damage, type of cell, stage
of cell cycle and stage of organism development (Pearl et al., 2015).

Human CNS development involves the proliferation and
subsequent migration and differentiation of neural progenitor
cells, beginning a few weeks after conception and continuing to
∼6 months after birth (Rulten and Caldecott, 2013). Most neurons
then enter a postmitotic phase (and are required to survive for a
lifetime), although there is clearly a high turnover of molecules
within these cells. A small subset of neurons in the human
hippocampus and lateral ventricle of the mature CNS can divide and
contribute to ongoing neurogenesis (McKinnon, 2013). The phase
of cell cycle determines which DNA repair pathways are utilised in
neurons. For example, dividing progenitors in S/G2 phase use
accurate homologous recombination (HR) for double-strand break
repair (see Glossary, Box 1) and replication fork maintenance
(Fig. 1). Mutations in these repair systems are embryonic lethal or
lead to profound neurodevelopmental defects (McKinnon, 2013;
Rulten and Caldecott, 2013). By contrast, mature postmitotic
neurons in G0/G1 rely upon less accurate nonhomologous end
joining (NHEJ) for double-strand break repair in the absence of a
sister chromatid (Fig. 1). In addition, DNA damage in these neurons

Double-strand DNA break

(B) Nonhomologous end joining(A) Homologous recombination
Cell cycle phase

1. End binding and 
signalling

2. End processing

3. Strand invasion 3. End apposition

4. Resolution and 
ligation

S/G2 G0/G1
KU70/80

DNA-PKcs

ArtemisPNKP

TDP1 Aprataxin
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XRCC4XLFResolvases

MRN complex
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Fig. 1. DNA double-strand break repair pathways in neurons, highlighting key similarities and differences. (A) Homologous recombination is utilised in S or
G2 phase of dividing neuronal progenitors. DNA ends are processed by MRN complexes and other proteins to produce 3′-overhangs coated by RPA proteins.
BRCA2 catalyses the exchange of RPA for RAD51, thus enabling invasion of the sister chromatid and error-free repair. (B) Nonhomologous end joining is utilised by
postmitotic neurons in G0 or G1. DNA ends are bound by KU70/80, leading to the recruitment of DNA-PKcs. End processing is carried out by various enzymes
includingPNKPandArtemis (DCLRE1C), and then ends are ligated by LIG4-XRCC4. This form of repair preserves genomic integrity but can be error prone. Proteins
at key commitment points are shown in colour, others in grey boxes. Some factors involved in double-strand break repair and cell-cycle regulation are omitted
for clarity. BRCA2, breast cancer type 2 susceptibility protein; CtIP, C-terminal binding protein 1 interacting protein; DNA-PKcs, DNA-dependent protein kinase,
catalytic subunit; MRN complex, MRE11-RAD50-NBS1 complex; LIG, DNA ligase; PCNA, proliferating cell nuclear antigen; PNKP, polynucleotide kinase
3′-phosphatase; RPA, replication protein A; TDP1, tyrosyl-DNA phosphodiesterase 1; XLF, XRCC4-like factor; XRCC4, X-ray repair cross-complementing 4.
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is predominantly single stranded, which can lead to the inhibition of
transcription, as well as compromised genomic integrity. Pathways
such as single-strand break repair (SSBR; see Glossary, Box 1) and
transcription-coupled nucleotide excision repair (TC-NER; see
Glossary, Box 1) are essential to cellular function, and mutations in
these pathways lead to late neurodevelopmental defects, such as
microcephaly, and, more commonly, neurodegeneration
(McKinnon, 2013; Rulten and Caldecott, 2013). The type and
location of affected neurons determine the clinical phenotypes
observed (Madabhushi et al., 2014).
Many parts of the DDR are highly conserved from prokaryotes to

eukaryotes, with extra layers of regulation and redundancy found in
higher organisms. Individual linear repair pathways, such as base
excision repair (BER; see Glossary, Box 1), nucleotide excision
repair (NER; see Glossary, Box 1) and mismatch repair (MMR; see
Glossary, Box 1), involve a series of analogous steps: lesion
recognition, repair factor recruitment, lesion excision leading to
DNA strand breakage, processing of DNA ends and DNA synthesis,
to complete repair (Fig. 2). In addition, it is increasingly recognised
that there is significant redundancy between pathways, presumably
arising through divergent evolution in order to repair awide range of
lesions whilst maintaining genomic integrity (O’Brien, 2006; Pearl
et al., 2015). Pathways can also be involved in noncanonical repairs.
For example, MMR enzymes, which usually act at replication forks
in dividing cells to correct DNA polymerase errors, have been

shown to recognise and repair mispaired bases in nondividing yeast
cells (Rodriguez et al., 2012). Therefore, DNA repair systems have
activities that depend not only on the type of DNA damage but also
on the cell/tissue context, the background genetics of the cell, and
the prevailing environmental conditions. CAG repeats in the DNA
of adult postmitotic neurons constitute a particular substrate for
repair systems, and the regulation of these repair activities is
entwined with CAG repeat disease pathogenesis, as discussed
below.

Repetitive DNA and CAG repeat disorders
Recent estimates suggest that >65% of the human genome consists
of repetitive elements, ranging from microsatellites (2-6 base pair
tandem repeats) up to whole genes (e.g. rDNA gene arrays) (Hall
et al., 2017; de Koning et al., 2011). These elements can be coding
or noncoding and have a range of essential functions in cells,
including at centromeres and telomeres. Microsatellites are known
to be common and hypermutable in both prokaryotic and eukaryotic
genomes (Bichara et al., 2006). Their mutability can aid adaptation
to changing environments, particularly in microorganisms, and
might have a role in the regulation of gene expression in eukaryotes
(Bichara et al., 2006; Gymrek et al., 2015). The processive
mechanisms of DNA and RNA polymerases on unwound DNA
mean that tandem repeats can readily adopt noncanonical
conformations in DNA, such as slipped strands, hairpin loops,
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Fig. 2. Similarities and differences between the principal mammalian single-strand DNA damage repair pathways. Examples of cell stressors are shown,
with resultant DNA damage. DNA repair proceeds through a conserved general mechanism of damage recognition, lesion excision and processing, DNA repair
synthesis and ligation of DNA ends, as shown from top to bottom. Components vary between pathways although there is considerable overlap. The four main
repair pathways for single-strand DNA lesions are shown, with the key proteins involved. (A) Mismatch repair (MMR). (B) Base excision repair (BER).
(C) Nucleotide excision repair (NER). (D) Single-strand break repair (SSBR). AP endonuclease, apurinic/apyrimidinic endonuclease 1; CSA/CSB, Cockayne
syndrome protein A/B; ERCC1, excision-repair cross-complementing 1; FEN1, flap endonuclease 1; GG-NER, global genomic nucleotide excision repair;
HR23B, human RAD23 homologue B; LIG, DNA ligase; MLH, MutL protein homologue; MSH, MutS protein homologue; PARP, poly(ADP-ribose) polymerase;
PMS2, postmeiotic segregation increased 2; PNKP, polynucleotide kinase 3′-phosphatase; Pol, DNA polymerase; TC-NER, transcription-coupled nucleotide
excision repair; TFIIH, transcription factor IIH; UV, ultraviolet; XPA/XPC/XPD/XPF/XPG, DNA repair proteins in different xeroderma pigmentosum (XP)
complementation groups; XRCC1, X-ray repair cross-complementing 1.
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G-quadruplexes and R-loops (Mirkin, 2007; Neil et al., 2017).
These structural perturbations of DNA have been implicated in
both the normal regulation of cellular functions, such as chromatin
organisation and gene expression, and in the aberrant DNA
processing that can lead to genomic instability. Repetitive
genomic loci are often polymorphic but cells have homeostatic
mechanisms to maintain fairly stable repeat lengths in DNA based
on structural stability, protein binding and reaction kinetics (Hall
et al., 2017; Lee andMcMurray, 2014). However, sometimes these
mechanisms fail and repeats expand or contract significantly, often
with resulting pathology.
Trinucleotide repeat disorders are human diseases that are

defined by expanded tandem arrays of three-nucleotide units in the
transcribed regions of a diverse range of genes (Budworth and
McMurray, 2013). Strikingly, all of these diseases have at least
some element of neurological dysfunction suggestive of a specific
need to regulate trinucleotide repeats tightly in the nervous system
(Orr and Zoghbi, 2007). Diseases caused by expanded tandem
CAG repeats in exons constitute a subset of the broader
trinucleotide repeat disorder group, and are linked by central
neurodegeneration, as well as DNA sequence. They are considered
in more detail below.
The first disease shown to be caused by an expanded CAG repeat

was spinal and bulbar muscular atrophy (SBMA) in 1991 (Spada
et al., 1991). Shortly afterwards, various other dominantly inherited
neurodegenerative conditions were also linked to expanded CAG
tracts, including HD, dentatorubral-pallidoluysian atrophy
(DRPLA), and some spinocerebellar ataxias (SCA1,2,3,6,7,12,17)
(Koide et al., 1994; Nagafuchi et al., 1994; Orr et al., 1993; The
Huntington’s Disease Collaborative Research Group, 1993).
Although these diseases all share a common underlying mutation
type, genotype-phenotype relationships are not straightforward.
Expanded CAG repeats can variably cause autosomal dominant
ataxia (SCAs), chorea (HD or DRPLA), or neither (SBMA), in
association with a variety of other symptoms. Only a small subset of
SCAs are caused by CAG repeats; of the 43 autosomal dominant
SCAs described to date, just seven have been attributed to CAG
repeats (Synofzik and Schüle, 2017). In addition, there is
considerable phenotypic diversity between even those SCAs
caused by CAG repeat expansion: for example, SCA6 presents as
a fairly ‘pure’ ataxia, whereas SCA7 often has associated retinal
degeneration (Sun et al., 2016; Synofzik and Schüle, 2017).

However, even though spinocerebellar degeneration can be caused
by a wide variety of CAG repeat and non-CAG mutations in
disparate genes, there might be a shared molecular pathogenesis. In
support of this hypothesis, many SCA gene products interact with,
and presumably mediate their effects through, a limited set of
intracellular proteins, the ‘ataxia interactome’ (Kahle et al., 2011;
Lim et al., 2006). Pathogenic CAG expansions are also found in
some patients with autosomal dominant chorea as part of their
clinical presentation; for example, in HD (with psychiatric,
behavioural and cognitive symptoms) (Bates et al., 2015) or in
DRPLA (with myoclonic epilepsy and ataxia) (Wardle et al., 2009).
Again, partially shared clinical phenotypes and underlying
mutations hint at a common pathology, and there might be a
broader commonality with the CAG repeat SCAs, as exemplified by
SCA17, which is also known as Huntington’s disease-like 4 (HDL-4),
owing to its clinical presentation (Gövert and Schneider, 2013).

Pathogenic CAG repeat expansions are found in the exons of
different genes for each of the different diseases (Table 1). Wild-
type repeat numbers range from 4 to ∼40 and are polymorphic at
each locus. When transcribed and translated, a tandem CAG repeat
tract, (CAG)n, encodes a polyglutamine stretch in protein, and this
polypeptide could have important effects in cells outwith the
function of the endogenous protein in which it sits (Ashkenazi et al.,
2017; Fujita et al., 2013). Expansion of the tandem CAG repeat over
a threshold is necessary and sufficient for all the CAG repeat
diseases, suggesting a toxic gain of function. The toxic threshold is
usually of the order of 35-45 tandem repeats, although with some
variation; for example, the disease threshold is shorter in SCA6 (>19
repeats) and longer in SCA3 (>60 repeats) (Table 1) (Durr, 2010).
Once over the disease threshold, longer repeat lengths are associated
with earlier symptom onset, although there is considerable variation
(Bates et al., 2015; Durr, 2010). Toxicity is conferred by the
expanded repeat, but the mechanisms by which CAG repeat
expansion leads to specific neurodegeneration remain incompletely
understood. Theoretically, CAG-containing DNA and/or mRNA
and/or polyglutamine-containing proteins could be pathogenic.
Repetitive DNA elements affect gene expression (Gymrek et al.,
2015), and there is also evidence of the toxicity of both CAG-
containing mRNA and polyglutamine in cells (Cheng et al., 2015;
Rué et al., 2016). Additionally, recent evidence from human HD
brains has suggested that sense and antisense mRNAs from (CAG)n
can be translated in all possible frames by noncanonical repeat-

Table 1. Genomic characteristics of CAG repeat diseases*

Disease Gene
Genomic
locus Exon

WT repeat
number

Pathogenic CAG repeat
thresholda

Repeat
interruptions? CAG repeat structure

HD HTT 4p16 1 of 67 9-26 >35 Yes (CAG)n(CAA)0-1CAG
DRPLA ATN1 12p13 5 of 10 6-35 >47 Not reported
SBMA AR Xq12 1 of 8 9-34 >37 Not reported
SCA1 ATXN1 6p22 8 of 9 6-35 >38 Yes (CAG)n(CAGCAT)0-4(CAG)n
SCA2 ATXN2 12q24 1 of 25 13-31 >32 Yes [(CAG)n(CAA)0-1(CAG)n]1-4
SCA3 ATXN3 14q32 8 of 11 11-44 >60 Yes (CAG)2CAAAAGCAGCAA(CAG)n
SCA6 CACNA1A 19p13 47 of 47 4-18 >18 Not reported
SCA7 ATXN7 3p14 3 of 13 4-19 >33 Not reported
SCA12 PPP2R2B 5q32 7 of 16b 4-32 >42 Not reported
SCA17 TBP 6q27 2 of 8 25-40 >40 Yes (CAG)3(CAA)3(CAG)nCAA

CAGCAA(CAG)nCAACAG

*Information from www.genereviews.org; www.scabase.eu; McMurray, 2010; Sequeiros et al., 2010.
aBased on uninterrupted CAG repeat tracts and including incomplete penetrance alleles.
b5′ UTR of alternatively spliced transcripts.
AR, androgen receptor; ATN1, atrophin 1; ATXN, ataxin; CACNA1A, calcium channel (voltage-dependent), alpha 1A subunit; DRPLA, dentatorubral-
pallidoluysian atrophy; HD, Huntington’s disease;HTT, huntingtin; PPP2R2B, protein phosphatase 2 regulatory subunit beta; SBMA, spinal and bulbar muscular
atrophy; SCA, spinocerebellar ataxia; TBP, TATA-box binding protein.
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associated non-ATG (RAN) translation to produce toxic
homopolymeric proteins (see Glossary, Box 1) (Bañez-Coronel
et al., 2015). Although all underpinned by similar CAG repeat
expansions, the different disease phenotypes are associated with the
selective degeneration of different brain cell types; for example,
cerebellar Purkinje cells are affected in SCAs and striatal medium
spiny neurons (MSNs; see Glossary, Box 1) in HD. The reasons for
this selectivity are unclear, but emphasise how gene expression,
protein context and cell type can all influence CAG repeat
pathology.
Given their shared causative repeat expansions and overlapping

clinical phenotypes, the CAG repeat disorders might be linked by a
common pathogenesis at the DNA level, involving DNA damage
and repair in neurons. We discuss the intersection of CAG repeat
disorders with DNA repair in more detail below.

CAG repeat disorders and DNA repair
Links between DNA repair defects and neurodegenerative diseases
have been known for many years. Fibroblasts and lymphocytes
cultured from patients with HD, Alzheimer’s disease, Parkinson’s
disease and amyotrophic lateral sclerosis have all been shown to be
sensitive to DNA damage induced by ionising radiation or
exogenous chemical mutagens (Moshell et al., 1980; Robison and
Bradley, 1984; Scudiero et al., 1981). It has been suggested that
accumulation of DNA damage as a result of inadequate DNA repair
could cause neurodegeneration, although it has been difficult to
discriminate between this hypothesis and the accrual of DNA
damage caused by other pathological cellular dysfunction (Robison
and Bradley, 1984). The discovery of neurodegenerative CAG
repeat disorders, and the apparent similarity of their repeat length
variation to that observed in microsatellites of some colorectal
cancers, led to a second line of investigation: the role of DNA
repair in the modulation of CAG repeat length. However,
microsatellite instability is observed throughout the genome in
the MMR-deficient tumours of Lynch syndrome, a cancer-
predisposition disorder (see Glossary, Box 1), alongside a
globally elevated mutation rate. By contrast, HD/SCA patients
only seem to show repeat number variation at a disease-specific,

expanded CAG repeat locus (Goellner et al., 1997; Slean et al.,
2008). These patients also have a significantly reduced incidence
of cancer [e.g. a standardised incidence ratio of 0.47 in the largest
study of HD (Ji et al., 2012)].

Once the disease-causing threshold is crossed, CAG repeat length
has an inverse relationship with the age at symptom onset. However,
in HD, the most well-studied CAG repeat disorder, repeat length
only explains ∼50% of the observed variation in age at symptom
onset. Studies of the large Venezuelan HD kindreds indicated that as
much as 40% of the remaining variation was heritable, suggesting
that background genetic variants can have a large influence on when
symptoms start (Wexler et al., 2004). In order to identify these
genetic modifiers (see Glossary, Box 1), a genome-wide association
study (GWAS; see Glossary, Box 1) was recently performed using
data from just over 4000 HD patients, to look for loci associated
with earlier or later onset HD than predicted by CAG repeat length
alone (GeM-HD Consortium, 2015). This study identified variants
at a number of loci with significant associations with the age at
symptom onset. Many of these variants are in, or near, the genes that
encode components of DDR pathways, and particularly those
involved with MMR (GeM-HD Consortium, 2015). Subsequent
work showed that many of the same genetic modifiers are
significant in other CAG repeat disorders, suggesting that there is
a common pathogenic mechanism driving disease onset, perhaps at
the level of the somatic CAG repeat (Bettencourt et al., 2016).
Furthermore, a comparison of disease progression with genotype in
a sample of HD patients that had been phenotyped in detail showed
a genome-wide significant signal in MSH3, a MMR gene
(Hensman-Moss et al., 2017). Collectively, these results were the
first to link human CAG repeat disorder phenotypes directly to
DNA repair, and corroborated many earlier results from model
systems. The simplest explanation for the genetic data is that DNA
repair variants directly affect repeat number in individuals, but it is
also possible that expanded (CAG)n could exacerbate DNA repair
defects (Fig. 3). In the sections below, we explore the evidence that
links CAG repeat diseases and DNA repair either at the level of the
CAG repeat in the genome, or as a downstream consequence of an
expanded CAG repeat.

DNA damage
& repair

Contraction ExpansionCAG repeats

(A) Wild-type allele (C) Disease-associated (D) Germline/somatic expansion(B) Intermediate

DNA damage
& repair

DNA damage
& repair

Protein role in 
DNA repair

Impaired DNA repair function of protein leads 
to increased DNA damage

(CAG)n

Toxic  cycle

Fig. 3. DNA damage and repair can affect CAG repeat length with downstream effects on disease pathogenesis. CAG repeats in DNA are unstable,
and cycles of DNA damage and repair can lead to changes in repeat length. (A) Wild-type length repeats can expand to (B) intermediate lengths,
stochastically. These will mostly be repaired to wild-type length (black, bold arrow from B to A), perhaps through a dedicated pathway, but a small
number will expand further (C) into the disease-associated range in gametes. (D) Once over the disease-causing threshold, repeats are predisposed to
expand further (black, bold arrow from C to D) in both germline and somatic cells. In addition to the role of DNA repair in repeat length changes, some genes
containing CAG repeats encode proteins with roles in DNA repair. Expanded repeats can impair the functions of these DNA repair proteins, leading
to the accrual of DNA damage in neurons and to a toxic cycle of DNA damage/repair and repeat expansion (red dashed arrows). DNA repair variants
associated with earlier or later disease onset could affect any of these processes.
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CAG repeats in the genome
Expansion of a tandem CAG repeat in genomic DNA over a
threshold number is absolutely required for each of the CAG repeat
disorders (Table 1). Long repeats are intrinsically unstable, as
shown in cell-free and unicellular systems, and their dynamics in
neurons and gametes are linked to disease pathology.

Intrinsic instability of CAG repeat number
Biophysical studies in vitro have shown that disease-causing CAG
repeats can form unusual DNA structures, including stable hairpins.
The stability of these structures correlates with the propensity for
CAG repeat expansion (Gacy et al., 1995). CAG:GAC base pairing
in the stem of a hairpin contains a middle A:A base pair mismatch,
which in silico modelling predicts will adopt an unusual Z DNA
structure, perhaps via the flipping out of bases (Khan et al., 2015).
This could predispose hairpin structures to both increased DNA
damage and MMR protein binding. Indeed, bases damaged by ROS
(e.g. 8-oxo-dG) can affect the formation and stability of hairpins, as
well as having consequences on DNA repair fidelity (Volle et al.,
2012). MSH2, part of the MutS mismatch recognition complexes
(see Glossary, Box 1), binds directly to slipped-strand DNA
structures formed by (CAG)n in vitro (Pearson et al., 1997). The
processing of these artificial DNA substrates by human cell extracts
requires various repair factors, principally MMR proteins (including
MSH2, MSH3, PMS2), although the repair outcomes depend on the
starting DNA structure and not just its sequence (Panigrahi et al.,
2005, 2010). It is hard to draw physiological mechanistic
conclusions from these cell-free systems, but putative pathways
can be identified; for example, MutSβ (MSH2/MSH3 complex) is
required for repeat expansion in some assays (Nakatani et al., 2015;
Stevens et al., 2013), and long-patch BER deficiency has been
implicated elsewhere (Goula et al., 2009).
Further insight into CAG repeat stability has come from bacteria

and yeast. These microorganisms are attractive models as they are
genetically tractable, most of their DNA repair factors have been
identified, and high-throughput screening assays exist for them
(Bichara et al., 2006; Dixon et al., 2004; Kim et al., 2016). Repeats
are unstable in these microorganisms, and seem to have a similar
length threshold to that observed in human diseases, although they
exhibit a propensity for repeat contractions over expansions. There
is also a requirement for MMR in (CAG)n instability: when MMR
factors are knocked out, repeats are stabilised (Jaworski et al., 1995;
Williams and Surtees, 2015). Given the phylogenetic conservation
of MMR and other DNA repair factors from bacteria to humans
(Fishel, 2015), these results might be relevant to human disease.
However, bacterial and yeast cells divide in culture, and have much
simpler DNA-damage response systems than human cells. They
also contain eukaryotic triplet repeats out of genomic context, either
on plasmids or integrated into DNA that lacks human chromatin
structure and organisation. More disease-relevant data have come
from multicellular organisms, as detailed below.

Germline and somatic instability of CAG repeats
Heritable, stochastic CAG repeat expansions in germline cells (i.e.
sperm or egg) are reported in many CAG and non-CAG repeat
disorders (Budworth and McMurray, 2013; Durr, 2010). Given that
repeat length correlates inversely with age at disease onset, this
intergenerational propensity for CAG expansion explains the
phenotypic observation of anticipation, whereby disease onset
tends to get earlier over generations. This has been shown in all
CAG repeat disorders, and is usually more marked through the
paternal line (Durr, 2010), although other non-CAG trinucleotide

repeat disorders, such as Huntington’s disease-like 2 (HDL2) and
myotonic dystrophy, show increased anticipation through the
maternal line (Gövert and Schneider, 2013). Repeat length
analysis has shown that significant CAG mosaicism is present in
the sperm of male HD patients and that this correlates with repeat
expansion on transmission (Telenius et al., 1995). Evidence from a
transgenic mouse model of HD (R6/1) suggests that repeat
expansion in sperm occurs after meiosis, as haploid spermatids
are maturing into spermatozoa (Kovtun and McMurray, 2001). This
implicates DNA repair rather than DNA replication in the DNA
synthesis needed for repeat expansion.

Variations in CAG repeat length have also been found in somatic
(i.e. nongermline) cells. Repeat length stability varies across cell
types and can be associated with phenotype. For example, in
transgenic and knock-in mouse models of HD, CAG repeat length
tends to be increased in cells from the striatum, cortex and liver, but
stable in cells from the cerebellum, blood and tail. Maximum
expansion is observed in the striatum, which correlates well with
the degeneration of striatal MSNs that underpins the disease
(Gonitel et al., 2008; Lee et al., 2011; Møllersen et al., 2010).
Large CAG repeat expansions have also been demonstrated in
postmortem human brain neurons from HD patients, and increased
expansion of repeats correlates with younger age at onset of
symptoms (Kennedy, 2003; Shelbourne et al., 2007; Swami et al.,
2009). DNA repair is implicated in affected neurons, as these are
postmitotic. However, similar tissue-specific patterns of repeat
expansion are seen in SCAs and, in these diseases, degeneration is
observed in the cerebellar Purkinje neurons rather than the striatal
MSNs (Chong et al., 1995; Hashida et al., 1997; Tanaka et al.,
1996). The relatively high levels of expression of certain DNA
repair factors in the cerebellum might prevent significant repeat
expansion in this tissue. Genomic context is also important. For
example, SCA7 CAG repeats in a transgenic mouse model were
stable when present in complementary DNA (cDNA), but unstable
if contained in a human genomic fragment. In addition, repeat
stability did not correlate with neurodegeneration (Libby et al.,
2003). Therefore, although somatic CAG repeat expansion can
occur, and might correlate with neurodegeneration in HD, it
remains unclear whether expansion drives pathology in
individuals or results from downstream DNA repair defects in
affected cells (Chong et al., 1995).

Modifiers of CAG repeat stability in the genome
Various cis and trans factors can affect the stability of CAG repeats
in the genome. Cis factors include the length of the CAG repeat, the
presence of repeat interruptions, haplotype and genomic context.
Longer repeats, particularly those that are over the disease-causing
threshold, are more unstable and tend to expand (Fig. 3), although
repeat interruptions can temper these effects (Usdin et al., 2015).
Interruptions have been identified and associated with increased
repeat stability, and later age at disease onset, in various SCAs and
in HD (Table 1), as well as in other trinucleotide repeat disorders
such as fragile X syndrome, Friedreich’s ataxia and myotonic
dystrophy (Chong et al., 1997; Chung et al., 1993; Eichler et al.,
1994; Gao et al., 2008; Yu et al., 2011). Within the CAG repeat
diseases, interruptions of a pure CAG repeat almost always involve
alteration of the third base in the codon (the most tolerant of
change). Interruptions were first observed in SCA1 with variable
numbers of CAT codons replacing CAG (Chung et al., 1993). These
reduce the stability of hairpin structures formed by pure (CAG)n
repeats in DNA, inhibiting repeat expansion, as well as inserting a
number of histidines into the polyglutamine stretch of protein
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(Menon et al., 2013; Pearson et al., 1998; Sobczak and Krzyzosiak,
2004). More commonly, CAG repeat tracts can be interrupted by
CAA codons, which alter the DNA/RNA sequence but do not affect
the translated polyglutamine. In SCA2, pure CAG repeats of
intermediate length (∼27-35 repeats) can expand into the disease
range but repeats interrupted by CAA expand to a lesser extent and
are associated with different neurological phenotypes (amyotrophic
lateral sclerosis or parkinsonism, depending on the repeat number)
(Charles et al., 2007; Elden et al., 2010; Yu et al., 2011). In SCA17,
complex CAG repeat alleles of the TATA-box binding protein gene
(TBP) that contain various CAA interruptions are associated with
later disease onset (Gao et al., 2008). In HD, the penultimate codon
of the CAG tract is usually CAA, followed by one more CAG before
the (CCG)n repeat encoding polyproline begins. The relevance of
the penultimate interrupting CAA is uncertain, but its absence
correlates with earlier onset (and with repeat expansion) in a few
cases (Goldberg et al., 1995). Conversely, in a bacterial artificial
chromosome mouse model of HD, a huntingtin (HTT) allele with 97
codons of alternating CAA/CAG is stable over 12 months in both
germline and somatic cells, but the mice still develop a
neurodegenerative pathology (Gray et al., 2008).
It appears that if a CAG repeat is above a threshold length and of

appropriate codon structure and context, it is licensed to become
unstable. Trans factors, such as DNA repair proteins, can then act on
this DNA substrate to increase or decrease the repeat number in
specific tissues.Work on trans factors has mostly been carried out in
mouse models of HD. Transgenic and knock-in mouse models of
HD, all with long tandem CAG tracts of >100 repeats, develop
progressive neurological impairment, leading to reduced abilities in
tests of motor, coordination and cognitive function (Brooks et al.,
2012; Ferrante, 2009). The development of somatic CAG repeat
expansion in the striatum of mouse HD models (for example, R6/1
transgenic mice carrying exon 1 of the human HTT gene)
(Mangiarini et al., 1997) correlates with symptom development.
Crossing mouse models of HD with mice that carry different DNA
repair gene mutations has shown that deficiencies in specific MMR
genes (e.g. Msh2, Msh3, Mlh1 or Mlh3), or BER genes (e.g. Ogg1
or Neil1) can abrogate somatic and/or germline CAG repeat
expansion and, in some cases, ameliorate HD-like phenotypes
(Budworth et al., 2015; Kovalenko et al., 2012; Pinto et al., 2013;
Usdin et al., 2015; Wheeler et al., 2003). These effects seem gene
specific, as knockouts of other DNA repair factors in the same
pathways [e.g. ofMsh6 (MMR) orMpg glycosylase (BER)] have no
effect on repeat stability. In addition, results from different diseases
and models have been inconsistent. For example, NER factors have
been implicated in CAG repeat diseases. A study of 137 SCA3
parent-child repeat transmissions identified variants in NER factors
Cockayne syndrome protein B (CSB; see Glossary, Box 1; Fig. 2C),
RPA proteins and CDK7, as being associated with intergenerational
repeat expansions (Martins et al., 2014). However, knockouts of
different NER factors in different CAG repeat disease models have
variable effects: Csb (Ercc6) knockout in HD mice promotes
germline repeat instability (Kovtun et al., 2011); XPG (mus201)
knockout in a Drosophila model of SCA3 abolishes repeat
instability (Jung and Bonini, 2007); Xpa knockout in a SCA1
mouse reduces somatic repeat instability in many areas of the
brain (although not in the cerebellum) (Hubert et al., 2011). The
reasons for these differences are not fully understood, although
the human homologues might not contain relevant variation, and
some repair factors have additional functions outside NER; for
example, CSB has chromatin remodelling and transcriptional
regulation activities.

Downstream deficits in DNA repair in CAG repeat diseases
The proteins encoded by CAG repeat-containing genes have a wide
range of functions in different cellular processes (Table 2).
However, most are ubiquitously expressed and have links to
transcriptional regulation, tying in with earlier work that identified
polyglutamine stretches of 10-30 amino acids as being potent
transactivators (Gerber et al., 1994). The recent realisation that
repeat length polymorphism in DNA can modulate gene expression
suggests that expanded repeats might affect transcription through
both DNA- and protein-mediated mechanisms (Gymrek et al.,
2015). The target genes that are differentially expressed as the result
of repeat instability are not known. Fibroblasts, lymphoblasts or
lymphocytes cultured from patients with HD or other
neurodegenerative conditions accrue more DNA damage than
wild-type controls; this could be caused by defective DNA repair
(Moshell et al., 1980; Robison and Bradley, 1984; Scudiero et al.,
1981). In support of this hypothesis, various polyglutamine-
containing proteins, including HTT, androgen receptor (AR),
ataxin (ATXN) 1, ATXN2 and ATXN3, have been shown to have
roles in DNA repair (Table 2), and there is evidence that at least
some of the pathogenesis of CAG repeat expansion might arise from
the loss of wild-type protein function (Ashkenazi et al., 2017;
Chatterjee et al., 2015; Gao et al., 2015; Saudou and Humbert,
2016; Zeitlin et al., 2000). As an example, regulated
phosphorylation of HTT at various sites is involved in the DNA
damage response. The N-terminus of HTT (particularly methionine
8) can act as a direct sensor of oxidative stress, leading to its
phosphorylation at serines 13 and 16 and translocation from its
usual cytoplasmic location to the nucleus (DiGiovanni et al., 2016).
In the nucleus, HTT is recruited to sites of DNA damage, in a
process dependent on ATM serine/threonine kinase (ATM), and
might function as a scaffold for DNA repair complexes (Fig. 4A).
Analysis of patient fibroblasts shows that an expanded
polyglutamine in HTT does not prevent its recruitment to sites of
DNA damage, but is associated with increased DNA damage,
consistent with a dominant-negative effect on repair (Fig. 4B)
(Maiuri et al., 2016). In addition, wild-type HTT is phosphorylated
by cyclin-dependent kinase (CDK) 5 on serines 1181 and 1201 in
response to DNA damage, and this seems to have a protective role in
inhibition of p53 (TP53)-induced cell death. Loss of this protective
phosphorylation in ageing and/or disease-associated neurons could
lead to increased cell death, although the exact molecular
mechanisms involved are not understood (Fig. 4B) (Anne et al.,
2007).

Recent work on ATXN3 has reinforced the importance of
subcellular localisation and protein-protein interactions in the
regulation of DNA repair. ATXN3 is a deubiquitinase that has a
neuroprotective role mediated by its regulation of autophagy (via
wild-type polyglutamine; see Glossary, Box 1) (Ashkenazi et al.,
2017), the ubiquitin-proteasome system, and DNA repair. Heat-
shock or oxidative stress can stimulate the nuclear translocation of
ATXN3, where it has roles in transcriptional regulation, possibly
through its deubiquitinase activity, and DNA repair (Fig. 4A) (Orr,
2012). The latter was first suggested by the interaction of ATXN3
with human RAD23 homologues in a yeast two-hybrid screen, as
RAD23 proteins are involved in NER (Fig. 2C) (Wang et al., 2000).
More recently, ATXN3 has been shown to protect cells from DNA
damage through its interaction with polynucleotide kinase 3′-
phosphatase (PNKP), a key enzyme involved in the processing and
repair of DNA strand breaks (Figs 1 and 2) (Chatterjee et al., 2015).
Rare mutations in PNKP can cause ataxic syndromes (Bras et al.,
2015). Interestingly, the expansion of a polyglutamine tract in
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Table 2. Functions of proteins encoded by genes causing CAG repeat diseases, and their links to DNA damage and repair

Disease Gene Wild-type protein functionsa Expressionb Links to DNA damage/repair References

HD HTT Transcriptional regulation; molecular
scaffolding and vesicle trafficking;
neurodevelopment; cell survival

Ubiquitous N-terminus (M8) functions as a ROS
sensor leading to nuclear
translocation

DiGiovanni et al.,
2016

DNA damage leads to phosphorylation
(serines 1181 and 1201) by Cdk5 as
part of DDR

Anne et al., 2007

Recruited by ATM to sites of DNA
damage

Maiuri et al., 2016

Quiescent human HD fibroblasts are
defective in DSB repair. Mutant HTT
may sequester ATM in cytoplasm

Ferlazzo et al.,
2014

Exaggerated DDR following oxidative
stress in HD fibroblasts

Giuliano et al., 2003

DRPLA ATN1 Transcriptional co-repressor through
recruiting NR2E1

Ubiquitous None known

SBMA AR Transcription factor when bound to
androgen

Testis, breast, liver,
platelets. Low
levels elsewhere

AR with expanded polyglutamine can
sequester PTIP (containing
glutamine-rich region) away from DNA
repair pathways, leading to
accumulation of DNA damage in cell
models

Xiao et al., 2012

SCA1 ATXN1 Brain development via transcriptional co-
repressor complex with capicua protein;
alternative splicing; cell signalling
through Notch; modulation of PP2A

Ubiquitous Polyglutamine-containing ATXN1 (or
HTT, AR, ATXN7) can sequester
multifunctional VCP, leading to
functional deficiency in DNA repair
and accumulation of DNA damage in
cells

Fujita et al., 2013

Overexpression of DNA repair factor
RpA1 in mouse or Drosophila models
of SCA1 can ameliorate phenotype

Barclay et al., 2014;
Taniguchi et al.,
2016

SCA2 ATXN2 RNA metabolism; regulation of translation Ubiquitous shRNA knockdown of ATXN2 in HeLa
cells leads to increased DNA damage
(DSBs and R-loops), partially rescued
by Mg2+ supplementation

Abraham et al.,
2016

Exaggerated DDR following oxidative
stress in SCA2 fibroblasts

Giuliano et al., 2003

SCA3 ATXN3 Transcriptional regulation (stress
response); protein homeostasis through
ubiquitin-proteasome system (ataxin-3
is a deubiquitinase)

Ubiquitous RAD23A/B have roles in NER and
proteasome function. They bind
ATXN3 and protect it from
proteasomal degradation

Blount et al., 2014

ATXN3 with expanded polyglutamine
sequesters PNKP outside nucleus
and inhibits its 3′-phosphatase
activity, leading to increased DNA
strand breaks in cell and mouse
models, and postmortem human
brains

Chatterjee et al.,
2015; Gao et al.,
2015

SCA6 CACNA1A Voltage-gated calcium channel abundant
in cerebellar Purkinje cells; product of
alternative translation functions as a
transcription factor involved in neuronal
differentiation

Predominantly
neuronal

None known Du et al., 2013

SCA7 ATXN7 Component of STAGA chromatin
remodelling complex that regulates
transcription

Ubiquitous None known Wang and Dent,
2014

SCA12 PPP2R2B Regulatory subunit B of PP2A involved in
transcriptional regulation, cell growth
and division

Predominantly
neuronal

None known Cohen and
Margolis, 2016

SCA17 TBP Binds TATA box in gene promoters as part
of TFIID, which is required for initiation of
transcription by RNA polymerase II

Ubiquitous TBP can bind damaged DNA at or near
TATA boxes

Aboussekhra and
Thoma, 1999;
Jung et al., 2001

aWild-type protein functions from www.genecards.org and specific references: HD (Liu and Zeitlin, 2017; Saudou and Humbert, 2016); SCA1 (Lu et al., 2017;
Sánchez et al., 2016); SCA2 (Ostrowski et al., 2017); all SCAs (Orr, 2012).
bProtein expression from www.proteinatlas.org and www.genecards.org (Human Integrated Protein Expression Database).
AR, androgen receptor; ATM, ataxia telangiectasia mutated; ATN1, atrophin 1; ATXN, ataxin; CACNA1A, calcium channel (voltage-dependent), alpha 1A subunit;
DDR, DNA damage response; DRPLA, dentatorubral-pallidoluysian atrophy; DSB, double-strand DNA break; HD, Huntington’s disease; HTT, huntingtin; NER,
nucleotide excision repair; PNKP, polynucleotide kinase 3′-phosphatase; STAGA, SPT3-TAF9-GCN5 acetyltransferase; PP2A, protein phosphatase 2; PPP2R2B,
protein phosphatase 2 regulatory subunit beta; PTIP, PAX2 transactivation domain-interacting protein; ROS, reactive oxygen species; SBMA, spinal and bulbar
muscular atrophy; SCA, spinocerebellar ataxia; shRNA, short hairpin RNA; TBP, TATA-box binding protein; TFIID, transcription factor IID; VCP, valosin-containing
protein.
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ATXN3 leads to both the sequestration of PNKP outside the nucleus
and the inhibition of nuclear PNKP activity, which together lead to
impaired DNA repair. Persistent DNA damage (and DNA damage
signalling through ATM) is observed in mouse and cellular models
of SCA3, as well as in postmortem human SCA3 brains, and this can
trigger cell death through p53-mediated and other pathways
(Fig. 4C) (Chatterjee et al., 2015; Gao et al., 2015).
A similar theme is continued in cell models of SBMA and SCA1.

Expanded polyglutamine within AR or ATXN1, respectively, lead
to the sequestration of proteins involved in DNA repair and the
subsequent accumulation of DNA damage (Fujita et al., 2013; Xiao
et al., 2012). As well as being intrinsically deleterious to cells,
unrepaired DNA damage also leads to persistent activation of the
DDR, which in itself can be toxic, as seen in other
neurodegenerative disorders (Hoch et al., 2016). The importance
of accurate and timely DNA repair in the cerebellum has long been
noted, given that mutations in enzymes such as aprataxin and tyrosyl
DNA phosphodiesterase 1 (TDP1), responsible for processing
damaged DNA ends to permit repair (Fig. 1), lead specifically to
cerebellar neurodegeneration (Ward and La Spada, 2015).
Therefore, there is increasing evidence in a range of CAG repeat

diseases that defective DNA repair might be involved in disease
pathogenesis. An expanded polyglutamine tract could lead to the
inactivation and/or inappropriate sequestration of repair proteins,
such that DNA damage builds up in neurons. If the wild-type
proteins themselves have functions in DNA repair, then
pathogenesis could be the result of a combination of loss of
function and dominant-negative gain of function (Fig. 4). Accrual
of DNA damage would also predispose CAG repeats, which are

already susceptible to damage as discussed above, to further strand
breaks, the repair of which could result in further repeat expansion,
thus setting up a toxic cycle (Fig. 3C,D).

Conclusion
CAG repeat disorders consist of a set of overlapping diseases that
are linked by pathogenic repeat expansion, neurodegeneration and
lack of disease-modifying therapies. Although some of the
causative mutations have been known for 25 years, very little
progress has been made in translating findings from cell and animal
models of these diseases into new treatments. The recent discovery
of disease-modifying genetic variants in HD and SCAs has shown
the power of ‘natural’ clinical trials, which capture information on
modifying variants that have been ‘crossed’ onto disease-causing
CAG repeat mutations present in the population (Holmans et al.,
2017). Excitingly, many of the identified disease-modifying
variants converge on specific DNA repair pathways, such as
MMR. Understanding why this is the case could illuminate the link
between CAG repeat expansion and neurodegeneration. Variants
could be influencing CAG repeat pathogenesis by affecting the
CAG repeat itself and/or by modulating the downstream DNA
damage that results from a defective polyglutamine-containing
protein. Ongoing GWAS and the future whole-exome or genome
sequencing of individuals with CAG repeat diseases promise to
yield more leads, which will need to be validated in human cell
models to gain a greater understanding of the underlying molecular
mechanisms involved.

Common variation in DDR pathways has also been associated,
via GWAS, with a range of other diseases. In the neuropsychiatric
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Fig. 4. Putative roles of HTT and ATXN3 in DNA repair and how HTT and ATXN3 polyglutamine expansions might lead to DNA damage and apoptosis.
(A) Wild-type HTT and ATXN3 proteins have various roles in the DNA damage response, as illustrated. ROS that cause DNA damage also induce the nuclear
translocation of both HTT and ATXN3 (solid arrows), as well as specific HTT phosphorylation. In the nucleus, HTT is recruited to sites of DNA damage by ATM,
and can act as a scaffold for DNA repair processes. Nuclear ATXN3 can bind to and stimulate the DNA end-processing repair factor, PNKP, as well as altering
gene expression as part of the cellular stress response. HTT and ATXN3 also have functions in regulation of autophagy. Repair processes and their associated
factors are shown in green. (B) In HD or (C) in SCA3, disease-length polyglutamine expansions (depicted as red, Qn) can inhibit DNA repair processes, leading to
the accrual of DNA damage in cells. In both of these diseases, the mutated proteins can sequester DNA repair factors in the cytoplasm (ATM in HD, PNKP in
SCA3), away from sites of DNA damage. Persistent DNA damage and signalling can result in p53-mediated apoptosis; in HD, via dominant-negative
hypophosphorylated mutant HTT at sites of DNA damage; in SCA3 via chronic activation of ATM bymutant ATXN3. Nonfunctional ATM and PNKP are crossed in
the figure. ATM, ataxia telangiectasia mutated; ATXN3, ataxin-3; HD, Huntington’s disease; HTT, huntingtin; PNKP, polynucleotide kinase 3′-phosphatase; ROS,
reactive oxygen species; SCA3, spinocerebellar ataxia type 3.
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field, variation in the MMR gene MLH1 has been associated with
autism, schizophrenia and lithium-responsive bipolar disorder
(Autism Spectrum Disorders Working Group of The Psychiatric
Genomics Consortium, 2017; Ripke et al., 2014; Song et al., 2016),
while the broader DDR has been implicated in frontotemporal
dementia (Ferrari et al., 2017). Beyond neuropsychiatry, DDR genes
have also been associated with lipid metabolism (MSH3 and FAN1
loci) (Weissglas-Volkov et al., 2013), reproductive ageing (Day
et al., 2015) and longevity (Shadyab and LaCroix, 2015). Inherited
mutations in multiple DDR genes are associated with familial
cancers, but there is scant evidence for common DDR variation
increasing cancer risk in nonfamilial disease. Possible contributions
of the DDR genes to testicular cancer (Litchfield et al., 2015) and in
a grouped analysis of lung, ovary, prostate, breast and colorectal
cancers (Scarbrough et al., 2016) have been identified, but the lack
of DDR gene and pathway associations in the many very large
cancer GWAS implies that variants in these pathways are, at most,
likely to have small effect sizes in these diseases. Therefore,
variation in DDR pathways is not specific to CAG repeat disorders
and could impact multiple diseases in different ways.
The development of olaparib, a poly(ADP-ribose) polymerase

(PARP; see Glossary, Box 1; Fig. 2) inhibitor, as a useful
antineoplastic drug has shown that therapeutic manipulation of
the DNA damage response is feasible in humans (Brown et al.,
2017; Pearl et al., 2015). Cross-pollinating advances made in the
cancer field, such as the development of synthetic lethality screens
(see Glossary, Box 1) in the DDR, with novel genetic leads
identified from studying CAG repeat diseases, could help develop
drugs more rapidly. Furthermore, therapeutic leads based on
genetic discoveries linked directly to human disease phenotypes
are more likely to be translated into effective disease-modifying
clinical treatments (Nelson et al., 2015; Plenge et al., 2013).
Finally, the build-up of DNA damage in ageing neurons,
potentially exacerbated by defective DNA repair processes,
could represent a broader paradigm for neurodegenerative
pathogenesis, making the findings of CAG repeat disease
research more widely applicable.
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Bañez-Coronel, M., Ayhan, F., Tarabochia, A. D., Zu, T., Perez, B. A., Tusi, S. K.,
Pletnikova, O., Borchelt, D. R., Ross, C. A., Margolis, R. L. et al. (2015). RAN
translation in huntington disease. Neuron 88, 667-677.

Barclay, S. S., Tamura, T., Ito, H., Fujita, K., Tagawa, K., Shimamura, T., Katsuta,
A., Shiwaku, H., Sone, M., Imoto, S. et al. (2014). Systems biology analysis of
Drosophila in vivo screen data elucidates core networks for DNA damage repair in
SCA1. Hum. Mol. Genet. 23, 1345-1364.

Bates, G. P., Dorsey, R., Gusella, J. F., Hayden, M. R., Kay, C., Leavitt, B. R.,
Nance, M., Ross, C. A., Scahill, R. I., Wetzel, R. et al. (2015). Huntington
disease. Nat. Rev. Dis. Prim. 1, 15005.

Bettencourt, C., Hensman-Moss, D., Flower, M., Wiethoff, S., Brice, A., Goizet,
C., Stevanin, G., Koutsis, G., Karadima, G., Panas, M. et al. (2016). DNA repair
pathways underlie a common genetic mechanism modulating onset in
polyglutamine diseases. Ann. Neurol. 79, 983-990.

Bichara, M., Wagner, J. and Lambert, I. B. (2006). Mechanisms of tandem repeat
instability in bacteria. Mutat. Res. Mol. Mech. Mutagen. 598, 144-163.

Blount, J. R., Tsou, W.-L., Ristic, G., Burr, A. A., Ouyang, M., Galante, H.,
Scaglione, K. M. and Todi, S. V. (2014). Ubiquitin-binding site 2 of ataxin-3
prevents its proteasomal degradation by interacting with Rad23. Nat. Commun. 5,
4638.

Bras, J., Alonso, I., Barbot, C., Costa, M. M., Darwent, L., Orme, T., Sequeiros,
J., Hardy, J., Coutinho, P. and Guerreiro, R. (2015). Mutations in PNKP cause
recessive ataxia with oculomotor apraxia type 4. Am. J. Hum. Genet. 96, 474-479.

Brooks, S. P., Jones, L. and Dunnett, S. B. (2012). Comparative analysis of
pathology and behavioural phenotypes in mousemodels of Huntington’s disease.
Brain Res. Bull. 88, 81-93.

Brown, J. S., O’Carrigan, B., Jackson, S. P. and Yap, T. A. (2017). Targeting DNA
repair in cancer: beyond PARP inhibitors. Cancer Discov. 7, 20-37.

Budworth, H. and McMurray, C. T. (2013). A brief history of triplet repeat diseases.
Methods Mol. Biol. 1010, 3-17.

Budworth, H., Harris, F. R., Williams, P., Lee, D. Y., Holt, A., Pahnke, J.,
Szczesny, B., Acevedo-Torres, K., Ayala-Peña, S. andMcMurray, C. T. (2015).
Suppression of somatic expansion delays the onset of pathophysiology in a
mouse model of huntington’s disease. PLoS Genet. 11, e1005267.

Charles, P., Camuzat, A., Benammar, N., Sellal, F., Destée, A., Bonnet, A.-M.,
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