Disease Models & Mechanisms 10 (9) September 2017 | Contents

Cover: Confocal micrograph from a mid-gestation PdgfraGFP+ mouse embryo in which cyan represents Pdgfra+ cells and red represents Pecam1+ endothelial cells. Pdgfra expression in endothelial-derived cells influences neural crest behavior and cardiac outflow tract development. Loss of Pdgfra in endothelium and endothelial-derived cells results in congenital heart defects, including double outlet right ventricle and transposition of the great arteries. See article by Aghajanian et al. on page 1101. Cover image by Haig Aghajanian is licensed under a Creative Commons Attribution 4.0 International licence.

REVIEWS
1039 Human pluripotent stem cell models of cardiac disease: from mechanisms to therapies
Brandão, K. O., Tabel, V. A., Atsma, D. E., Mummery, C. L. and Davis, R. P.

1061 Mouse models of metastasis: progress and prospects
Gómez-Cuadrado, L., Tracey, N., Ma, R., Qian, B. and Branton, V. G.

PERSPECTIVE
1075 Mitochondrial dynamics in Parkinson’s disease: a role for α-synuclein?
Pozo Devoto, V. M. and Falzone, T. L.

RESEARCH ARTICLES
1089 Loss of Cht5 causes altered neurogenesis in a mouse model of a childhood neurodegenerative disorder

1101 Pdgfra functions in endothelial-derived cells to regulate neural crest cells and the development of the great arteries
Aghajanian, H., Cho, Y. K., Rizer, N. W., Wang, Q., Li, L., Degenhardt, K. and Jain, R.

1109 NFκB signaling in alveolar rhabdomyosarcoma

1117 Trimebutine, a small molecule mimetic agonist of adhesion molecule L1, contributes to functional recovery after spinal cord injury in mice
Xu, J., Hu, C., Jiang, Q., Pan, H., Shen, H. and Schachner, M.

RESOURCE ARTICLES
1129 Early-onset torsion dystonia: a novel high-throughput yeast genetic screen for factors modifying protein levels of torsinAΔE
Zacchi, L. F., Dittmar, J. C., Mihalevic, M. J., Shewan, A. M., Schulz, B. L., Brodsky, J. L. and Bernstein, K. A.

1141 Lipidomic profiling of patient-specific iPSC-derived hepatocyte-like cells

1155 Screening in larval zebrafish reveals tissue-specific distribution of fifteen fluorescent compounds